--- language: - hu license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small En - Benedek Borbely results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hu split: test args: 'config: hu, split: test' metrics: - name: Wer type: wer value: 71.2272672528002 --- # Whisper Small En - Benedek Borbely This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8894 - Wer: 71.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8364 | 0.54 | 400 | 0.8894 | 71.2273 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.14.5 - Tokenizers 0.15.2