{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff4eb041580>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681199785851560540, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFuYE756uVU/NfsHPIgiIT/9AJu/E8Q4vxNW4r1h9Vq/VoccP6Bxjr+krkg+BPW3v/ejv7+Rr9m9lwp+PhMKDj8IgsU+lVdMv6GjFj+bweM+tDA2v+Ksmb9ImWU+C+RxP+PVlr8Ddeu/NdzDPnli47+f+7c/jByAPw91RL4TaGk/y0g/P41LNMBhuk8/CPepv+PYKD8B0Ss+Y6c1vvJC/j8eU34/YWkDwBml7Tzc8Ew/AQmeP1rm2b9cj8s+782avwS7fr8f6bY8yu0KP+7Fxz7j1Za/6CoLPzXcwz55YuO/1seFPr1SZz/F14293Ss1P1j1Q7685nI+RrZCvny8l79BS+o+zNTfv3sRZT+qmjI/5tymv+A2ZsDX34k+f1YPwJ1sHr4C6gDAezEsP10hfD+ziX6/GCwNPLlVNT9gChO+SD5ZP+gqCz813MM+tBsQP8xkyz4Cyc6+t9MmP1ymhr9q/yy/oGY1O8UOEL8/O74/mtFvPtOM1D44VRm/Ja4yP01cpL/rmDM+BrZCP9tZdL8X7b2/Tx0iQHdg+r9v2ss/E0mmve1u+D7vJLS+FH28v0g+WT8Ddeu/NdzDPnli47+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAFD4G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOhonPQAAAADQ5eu/AAAAAL9I1r0AAAAAAxPoPwAAAADh1QY+AAAAAF6P7z8AAAAAkx0SPgAAAAC0bPe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbgC5NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPaQAL4AAAAA5LjzvwAAAAD26q+8AAAAABBa5z8AAAAA8WrIvAAAAACvrfU/AAAAAGLOyjwAAAAAY9XgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKLGYzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAvRkO8AAAAAEE73L8AAAAA5pMHPgAAAAA9Q/A/AAAAAO+8VbwAAAAAGkXcPwAAAADbfyK8AAAAAO5Z3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn6HE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMGrKPAAAAACqUuO/AAAAACFsITwAAAAA3kHkPwAAAABkdLA9AAAAAMOu+D8AAAAAKLTwPAAAAABKPPu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJM2XQQcxTOMAWyUTegDjAF0lEdAqmk3JcPe6HV9lChoBkdAk8esg6ltTGgHTegDaAhHQKptlV5KODJ1fZQoaAZHQIsNFh9b5dpoB03oA2gIR0CqbhUDEFW5dX2UKGgGR0CUVVZn+Q2daAdN6ANoCEdAqm/xVU+9rXV9lChoBkdAh73aHCXQdGgHTegDaAhHQKp1BHiFTNt1fZQoaAZHQIVsM7Sy+pRoB03oA2gIR0Cqen8kUsWgdX2UKGgGR0CFj37Qb+98aAdN6ANoCEdAqns8pAlfJHV9lChoBkdAgvbEsasIV2gHTegDaAhHQKp+MM5wOvt1fZQoaAZHQHq5bI5o4+9oB03oA2gIR0CqhBwu27WedX2UKGgGR0Bzv7d43WFwaAdN6ANoCEdAqoitYGMXJ3V9lChoBkdAeRrWp6yB1GgHTegDaAhHQKqJOJ2MbWF1fZQoaAZHQJCmt9+gDihoB03oA2gIR0CqixBMJx//dX2UKGgGR0CCGa4nWrfcaAdN6ANoCEdAqpASJ/G2kXV9lChoBkdAdsy+x4Y772gHTegDaAhHQKqUlIcR15l1fZQoaAZHQIV1tbxEv01oB03oA2gIR0CqlTr08NhFdX2UKGgGR0CDAqp/gBLgaAdN6ANoCEdAqpfsjcEeQ3V9lChoBkdAknc2yX2M9GgHTegDaAhHQKqfXt4zJp51fZQoaAZHQJHrxTBInShoB03oA2gIR0Cqo7o2n88+dX2UKGgGR0CMGM8Djin6aAdN6ANoCEdAqqQ8MiKR+3V9lChoBkdAkHhLTlT3qWgHTegDaAhHQKqmHY287IV1fZQoaAZHQJEVY9bHIZJoB03oA2gIR0Cqqx4PGyX2dX2UKGgGR0CSM5JMQEpzaAdN6ANoCEdAqq+YG6f8M3V9lChoBkdAk1fvwqiGnGgHTegDaAhHQKqwInRb8m91fZQoaAZHQI4xv1vl2eRoB03oA2gIR0CqsgWwmmcfdX2UKGgGR0CSuUru6VdHaAdN6ANoCEdAqrk/AymALHV9lChoBkdAkRRnoPkJbGgHTegDaAhHQKq+8qRU3n91fZQoaAZHQJDdYfYBeX1oB03oA2gIR0Cqv3GvW6K+dX2UKGgGR0CQIRFKTSssaAdN6ANoCEdAqsFK5d4VynV9lChoBkdAkZmN96Tnq2gHTegDaAhHQKrGjPWQOnV1fZQoaAZHQJOR6G34Kx9oB03oA2gIR0CqyvjmKZUldX2UKGgGR0CSffQAdXDFaAdN6ANoCEdAqst4oRZlnXV9lChoBkdAkrT4ACGN72gHTegDaAhHQKrNTv/io891fZQoaAZHQIYV2yeI2wVoB03oA2gIR0Cq0wVjZteldX2UKGgGR0CQctyEcsDoaAdN6ANoCEdAqtnOHtWuHXV9lChoBkdAjUqAfU4JeGgHTegDaAhHQKraj+ERJ3B1fZQoaAZHQIj8BUDMeOpoB03oA2gIR0Cq3HqqGUOedX2UKGgGR0CRdfZFXq7iaAdN6ANoCEdAquGAGt6ol3V9lChoBkdAjLpr/0dzXGgHTegDaAhHQKrl6rd30PJ1fZQoaAZHQHeObpaA4GVoB03oA2gIR0Cq5m48EFGHdX2UKGgGR0CM/ESg5BC2aAdN6ANoCEdAquhE580DU3V9lChoBkdAjyUI5YHPeGgHTegDaAhHQKrtX531SO11fZQoaAZHQJIhcZFXq7loB03oA2gIR0Cq823XI2fkdX2UKGgGR0CSQ1ZsbedkaAdN6ANoCEdAqvQ1Euxrz3V9lChoBkdAlXZ3wXqJM2gHTegDaAhHQKr3QFZgXuV1fZQoaAZHQJQTHscABDJoB03oA2gIR0Cq/Kr876pHdX2UKGgGR0COqF+bVjI8aAdN6ANoCEdAqwEVgH/tIHV9lChoBkdAlC9RNVR1o2gHTegDaAhHQKsBkgDA8CB1fZQoaAZHQJFQ113dKuloB03oA2gIR0CrA5ICdSVGdX2UKGgGR0CUXUJhOP/8aAdN6ANoCEdAqwiou9OARXV9lChoBkdAkQp8VclgMWgHTegDaAhHQKsNhukUKzB1fZQoaAZHQJLumcRUWEdoB03oA2gIR0CrDkw8OkLydX2UKGgGR0CPqU4ffXPJaAdN6ANoCEdAqxEwd6sySHV9lChoBkdAkotSbQTmGWgHTegDaAhHQKsYWacZtN11fZQoaAZHQJDwkURFqi5oB03oA2gIR0CrHPdtEXtTdX2UKGgGR0CCi0fEn9ehaAdN6ANoCEdAqx2Chi9ZinV9lChoBkdAku298NQTEmgHTegDaAhHQKsfbzjFQ2x1fZQoaAZHQJJf/EBKcutoB03oA2gIR0CrJIHMdLg5dX2UKGgGR0CVQ6Vea8YiaAdN6ANoCEdAqykQ6ltTDXV9lChoBkdAi0yjdxhlUmgHTegDaAhHQKspk8lolD51fZQoaAZHQJINWwqy4WloB03oA2gIR0CrK+1g6U7kdX2UKGgGR0CQrcBC2MKkaAdN6ANoCEdAqzOapo9LYnV9lChoBkdAbR0A8SwnpmgHTegDaAhHQKs4kvRqoIh1fZQoaAZHQJLkrv2GqPxoB03oA2gIR0CrORcU21lYdX2UKGgGR0CVBLs7uDzzaAdN6ANoCEdAqzspTwUg0XV9lChoBkdAlGz26shgV2gHTegDaAhHQKtAcTzND+l1fZQoaAZHQJP1XYukDZFoB03oA2gIR0CrROeu/1xsdX2UKGgGR0CTxaZYxL00aAdN6ANoCEdAq0VoCMglnnV9lChoBkdAk+urbUPQOWgHTegDaAhHQKtHSnO0LMN1fZQoaAZHQJOnSjbi6xxoB03oA2gIR0CrTjb+T/yYdX2UKGgGR0CPNz8Nx2jgaAdN6ANoCEdAq1RLOTq0MXV9lChoBkdAk8HDR6Ww/2gHTegDaAhHQKtU2z0HyEt1fZQoaAZHQJB5jSw4bS9oB03oA2gIR0CrVsXnyNGWdX2UKGgGR0CScMnZkCmuaAdN6ANoCEdAq1vUEV32VXV9lChoBkdAjRctmlImPmgHTegDaAhHQKtgbBvaURp1fZQoaAZHQJH/lBTn7pFoB03oA2gIR0CrYPNu1ndwdX2UKGgGR0CTWnviLl3haAdN6ANoCEdAq2LR64UeuHV9lChoBkdAiFaGQjlgdGgHTegDaAhHQKtojULlV951fZQoaAZHQI2RmZTho/RoB03oA2gIR0Crb5cqvvBrdX2UKGgGR0CSJaNn5BToaAdN6ANoCEdAq3Bj1CgK4XV9lChoBkdAjtjnWjGkvmgHTegDaAhHQKtyUO2iL2p1fZQoaAZHQIvEmSZBsyloB03oA2gIR0Crd5GPxQSBdX2UKGgGR0CUB0cE/0NCaAdN6ANoCEdAq3wYvJzT4XV9lChoBkdAke3p1aGHpWgHTegDaAhHQKt8pNpM6BB1fZQoaAZHQJPanDdgv11oB03oA2gIR0CrfpmzByjpdX2UKGgGR0CVIurWiDdyaAdN6ANoCEdAq4Oq7I1cdHV9lChoBkdAl+P3arWAgGgHTegDaAhHQKuJ7A9mpVF1fZQoaAZHQJPGR5le4TdoB03oA2gIR0CrirgWJrLydX2UKGgGR0CXhtnezlcRaAdN6ANoCEdAq42r8R+SbHV9lChoBkdAlH4IacZtN2gHTegDaAhHQKuTBeMQ2/B1fZQoaAZHQJHQks5GSZBoB03oA2gIR0Crl3cFhXr/dX2UKGgGR0CVoc6Gxlg/aAdN6ANoCEdAq5f9LOAy23V9lChoBkdAlJ0MwQDmsGgHTegDaAhHQKuZ6CYkVvd1fZQoaAZHQJLhQkTpPh1oB03oA2gIR0Crnx2E0zj4dX2UKGgGR0CU+Y5ZKWcCaAdN6ANoCEdAq6Q2uieum3V9lChoBkdAkWaDV6NVBGgHTegDaAhHQKuk/JmNBGB1fZQoaAZHQJRuETj/+85oB03oA2gIR0Crp+CtJWeZdX2UKGgGR0CV8iRJEpiJaAdN6ANoCEdAq66vgP3BYXV9lChoBkdAlYtWdd3Sr2gHTegDaAhHQKuzNT5O8Ch1fZQoaAZHQJQXU7kn1FpoB03oA2gIR0Crs7Vx82JjdX2UKGgGR0CTXNf7rLQpaAdN6ANoCEdAq7WbS3LFGXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}