# AraElectra for Question Answering on Arabic-SQuADv2 This is the [AraElectra](https://huggingface.co/aubmindlab/araelectra-base-discriminator) model, fine-tuned using the [Arabic-SQuADv2.0](https://huggingface.co/datasets/ZeyadAhmed/Arabic-SQuADv2.0) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. with help of [AraElectra Classifier](https://huggingface.co/ZeyadAhmed/AraElectra-Arabic-SQuADv2-CLS) to predicted unanswerable question. ## Overview **Language model:** AraElectra
**Language:** Arabic
**Downstream-task:** Extractive QA **Training data:** Arabic-SQuADv2.0 **Eval data:** Arabic-SQuADv2.0
**Test data:** Arabic-SQuADv2.0
**Code:** [See More Info on Github](https://github.com/zeyadahmed10/Arabic-MRC) **Infrastructure**: 1x Tesla K80 ## Hyperparameters ``` batch_size = 8 n_epochs = 4 base_LM_model = "AraElectra" learning_rate = 3e-5 optimizer = AdamW padding = dynamic ``` ## Online Demo on Arabic Wikipedia and User Provided Contexts See model in action hosted on streamlit [![Open in Streamlit](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/wissamantoun/arabic-wikipedia-qa-streamlit/main) ## Usage For best results use the AraBert [preprocessor](https://github.com/aub-mind/arabert/blob/master/preprocess.py) by aub-mind ```python from transformers import ElectraForQuestionAnswering, ElectraForSequenceClassification, AutoTokenizer, pipeline from preprocess import ArabertPreprocessor prep_object = ArabertPreprocessor("araelectra-base-discriminator") question = prep_object('ما هي جامعة الدول العربية ؟') context = prep_object(''' جامعة الدول العربية هيمنظمة إقليمية تضم دولاً عربية في آسيا وأفريقيا. ينص ميثاقها على التنسيق بين الدول الأعضاء في الشؤون الاقتصادية، ومن ضمنها العلاقات التجارية الاتصالات، العلاقات الثقافية، الجنسيات ووثائق وأذونات السفر والعلاقات الاجتماعية والصحة. المقر الدائم لجامعة الدول العربية يقع في القاهرة، عاصمة مصر (تونس من 1979 إلى 1990). ''') # a) Get predictions qa_modelname = 'ZeyadAhmed/AraElectra-Arabic-SQuADv2-QA' cls_modelname = 'ZeyadAhmed/AraElectra-Arabic-SQuADv2-CLS' qa_pipe = pipeline('question-answering', model=qa_modelname, tokenizer=qa_modelname) QA_input = { 'question': question, 'context': context } CLS_input = { 'text': question, 'text_pair': context } qa_res = qa_pipe(QA_input) cls_res = cls_pipe(CLS_iput) threshold = 0.5 #hyperparameter can be tweaked ## note classification results label0 probability it can be answered label1 probability can't be answered ## if label1 probability > threshold then consider the output of qa_res is empty string else take the qa_res # b) Load model & tokenizer qa_model = ElectraForQuestionAnswering.from_pretrained(qa_modelname) cls_model = ElectraForSequenceClassification.from_pretrained(cls_modelname) tokenizer = AutoTokenizer.from_pretrained(qa_modelname) ``` ## Performance Evaluated on the Arabic-SQuAD 2.0 test set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) except changing in the preprocessing a little to fit the arabic language [the modified eval script](https://github.com/zeyadahmed10/Arabic-MRC/blob/main/evaluatev2.py). ``` "exact": 65.11555277951281, "f1": 71.49042547237256,, "total": 9606, "HasAns_exact": 56.14535768645358, "HasAns_f1": 67.79623803036668, "HasAns_total": 5256, "NoAns_exact": 75.95402298850574, "NoAns_f1": 75.95402298850574, "NoAns_total": 4350 ```