import torch import torch.nn as nn from transformers import SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig class SiglipVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, "mm_vision_select_feature", "patch") if not delay_load: self.load_model() else: self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name) def load_model(self, device_map=None): if self.is_loaded: print( "{} is already loaded, `load_model` called again, skipping.".format( self.vision_tower_name ) ) return self.image_processor = SiglipImageProcessor.from_pretrained( self.vision_tower_name ) self.vision_tower = SiglipVisionModel.from_pretrained( self.vision_tower_name, device_map=device_map ) self.vision_tower.requires_grad_(False) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == "patch": image_features = image_features[:, 1:] elif self.select_feature == "cls_patch": image_features = image_features else: raise ValueError(f"Unexpected select feature: {self.select_feature}") return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower( image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True, ) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower( images.to(device=self.device, dtype=self.dtype), output_hidden_states=True, ) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 from abc import ABC, abstractmethod IGNORE_INDEX = -100 IMAGE_TOKEN_INDEX = -200 DEFAULT_IMAGE_PATCH_TOKEN = "" DEFAULT_IM_START_TOKEN = "" DEFAULT_IM_END_TOKEN = "" def build_vision_tower(vision_tower_cfg, **kwargs): vision_tower = getattr( vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None), ) return SiglipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) import re def build_vision_projector(config, delay_load=False, **kwargs): projector_type = getattr(config, "mm_projector_type", "linear") mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type) if mlp_gelu_match: mlp_depth = int(mlp_gelu_match.group(1)) modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] for _ in range(1, mlp_depth): modules.append(nn.GELU()) modules.append(nn.Linear(config.hidden_size, config.hidden_size)) return nn.Sequential(*modules) class MixsenseMetaModel: def __init__(self, config): super(MixsenseMetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=True) self.mm_projector = build_vision_projector(config) if "unpad" in getattr(config, "mm_patch_merge_type", ""): self.image_newline = nn.Parameter( torch.empty(config.hidden_size, dtype=self.dtype) ) def get_vision_tower(self): vision_tower = getattr(self, "vision_tower", None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter mm_patch_merge_type = model_args.mm_patch_merge_type self.config.mm_vision_tower = vision_tower if self.get_vision_tower() is None: vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower else: if fsdp is not None and len(fsdp) > 0: vision_tower = self.vision_tower[0] else: vision_tower = self.vision_tower vision_tower.load_model() self.config.use_mm_proj = True self.config.mm_projector_type = getattr( model_args, "mm_projector_type", "linear" ) self.config.mm_hidden_size = vision_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature self.config.mm_patch_merge_type = mm_patch_merge_type if getattr(self, "mm_projector", None) is None: self.mm_projector = build_vision_projector(self.config) if "unpad" in mm_patch_merge_type: embed_std = 1 / torch.sqrt( torch.tensor(self.config.hidden_size, dtype=self.dtype) ) self.image_newline = nn.Parameter( torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std ) else: # In case it is frozen by LoRA for p in self.mm_projector.parameters(): p.requires_grad = True if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load( pretrain_mm_mlp_adapter, map_location="cpu" ) def get_w(weights, keyword): return { k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k } self.mm_projector.load_state_dict( get_w(mm_projector_weights, "mm_projector") ) class MixsenseMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_images(self, images): image_features = self.get_model().get_vision_tower()(images) image_features = self.get_model().mm_projector(image_features) return image_features def prepare_inputs_labels_for_multimodal( self, input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes=None, ): vision_tower = self.get_vision_tower() if vision_tower is None or images is None or input_ids.shape[1] == 1: return ( input_ids, position_ids, attention_mask, past_key_values, None, labels, ) elif type(images) is list or images.ndim == 5: if type(images) is list: images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] concat_images = torch.cat([image for image in images], dim=0) image_features = self.encode_images(concat_images) split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat") image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square") if mm_patch_merge_type == "flat": image_features = [x.flatten(0, 1) for x in image_features] else: image_features = self.encode_images(images) # TODO: image start / end is not implemented here to support pretraining. if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( self.config, "mm_use_im_start_end", False ): raise NotImplementedError # Let's just add dummy tensors if they do not exist, # it is a headache to deal with None all the time. # But it is not ideal, and if you have a better idea, # please open an issue / submit a PR, thanks. _labels = labels _position_ids = position_ids _attention_mask = attention_mask if attention_mask is None: attention_mask = torch.ones_like(input_ids, dtype=torch.bool) else: attention_mask = attention_mask.bool() if position_ids is None: position_ids = torch.arange( 0, input_ids.shape[1], dtype=torch.long, device=input_ids.device ) if labels is None: labels = torch.full_like(input_ids, IGNORE_INDEX) # remove the padding using attention_mask -- FIXME _input_ids = input_ids input_ids = [ cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask) ] labels = [ cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask) ] new_input_embeds = [] new_labels = [] cur_image_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() if num_images == 0: cur_image_features = image_features[cur_image_idx] cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) cur_input_embeds = torch.cat( [cur_input_embeds_1, cur_image_features[0:0]], dim=0 ) new_input_embeds.append(cur_input_embeds) new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = ( [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] ) cur_input_ids_noim = [] cur_labels = labels[batch_idx] cur_labels_noim = [] for i in range(len(image_token_indices) - 1): cur_input_ids_noim.append( cur_input_ids[ image_token_indices[i] + 1 : image_token_indices[i + 1] ] ) cur_labels_noim.append( cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]] ) split_sizes = [x.shape[0] for x in cur_labels_noim] cur_input_embeds = self.get_model().embed_tokens( torch.cat(cur_input_ids_noim) ) cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) cur_new_input_embeds = [] cur_new_labels = [] for i in range(num_images + 1): cur_new_input_embeds.append(cur_input_embeds_no_im[i]) cur_new_labels.append(cur_labels_noim[i]) if i < num_images: cur_image_features = image_features[cur_image_idx] cur_image_idx += 1 cur_new_input_embeds.append(cur_image_features) cur_new_labels.append( torch.full( (cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype, ) ) cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] cur_new_input_embeds = torch.cat(cur_new_input_embeds) cur_new_labels = torch.cat(cur_new_labels) new_input_embeds.append(cur_new_input_embeds) new_labels.append(cur_new_labels) # Truncate sequences to max length as image embeddings can make the sequence longer tokenizer_model_max_length = getattr( self.config, "tokenizer_model_max_length", None ) if tokenizer_model_max_length is not None: new_input_embeds = [ x[:tokenizer_model_max_length] for x in new_input_embeds ] new_labels = [x[:tokenizer_model_max_length] for x in new_labels] # Combine them max_len = max(x.shape[0] for x in new_input_embeds) batch_size = len(new_input_embeds) new_input_embeds_padded = [] new_labels_padded = torch.full( (batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device, ) attention_mask = torch.zeros( (batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device, ) position_ids = torch.zeros( (batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device ) for i, (cur_new_embed, cur_new_labels) in enumerate( zip(new_input_embeds, new_labels) ): cur_len = cur_new_embed.shape[0] if getattr(self.config, "tokenizer_padding_side", "right") == "left": new_input_embeds_padded.append( torch.cat( ( torch.zeros( (max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device, ), cur_new_embed, ), dim=0, ) ) if cur_len > 0: new_labels_padded[i, -cur_len:] = cur_new_labels attention_mask[i, -cur_len:] = True position_ids[i, -cur_len:] = torch.arange( 0, cur_len, dtype=position_ids.dtype, device=position_ids.device ) else: new_input_embeds_padded.append( torch.cat( ( cur_new_embed, torch.zeros( (max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device, ), ), dim=0, ) ) if cur_len > 0: new_labels_padded[i, :cur_len] = cur_new_labels attention_mask[i, :cur_len] = True position_ids[i, :cur_len] = torch.arange( 0, cur_len, dtype=position_ids.dtype, device=position_ids.device ) new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) if _labels is None: new_labels = None else: new_labels = new_labels_padded if _attention_mask is None: attention_mask = None else: attention_mask = attention_mask.to(dtype=_attention_mask.dtype) if _position_ids is None: position_ids = None return ( None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, ) def initialize_vision_tokenizer(self, model_args, tokenizer): if model_args.mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if model_args.mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens( [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True ) self.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True ) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True ) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if model_args.pretrain_mm_mlp_adapter: mm_projector_weights = torch.load( model_args.pretrain_mm_mlp_adapter, map_location="cpu" ) embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[ -num_new_tokens: ] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError( f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}." ) elif model_args.mm_use_im_patch_token: if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = False for p in self.get_output_embeddings().parameters(): p.requires_grad = False from typing import List, Optional, Tuple, Union from transformers import ( AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM, ) from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation.utils import GenerateOutput class MixsenseConfig(LlamaConfig): model_type = "mixsense_llama" class MixsenseLlamaModel(MixsenseMetaModel, LlamaModel): config_class = MixsenseConfig def __init__(self, config: LlamaConfig): super(MixsenseLlamaModel, self).__init__(config) class MixsenseLlamaForCausalLM(LlamaForCausalLM, MixsenseMetaForCausalLM): config_class = MixsenseConfig def __init__(self, config): super(LlamaForCausalLM, self).__init__(config) self.model = MixsenseLlamaModel(config) self.pretraining_tp = config.pretraining_tp self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, image_sizes: Optional[List[List[int]]] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels, ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes, ) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, image_sizes: Optional[torch.Tensor] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: (inputs, position_ids, attention_mask, _, inputs_embeds, _) = ( self.prepare_inputs_labels_for_multimodal( inputs, position_ids, attention_mask, None, None, images, image_sizes=image_sizes, ) ) else: inputs_embeds = self.get_model().embed_tokens(inputs) output = super().generate( position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs, ) return output def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs ): images = kwargs.pop("images", None) image_sizes = kwargs.pop("image_sizes", None) inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs, ) if images is not None: inputs["images"] = images if image_sizes is not None: inputs["image_sizes"] = image_sizes return inputs def image_process(self,images): vision_tower = self.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model() processor = vision_tower.image_processor def expand2square(pil_img, background_color): from PIL import Image width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result processed_images=[] for image in images: image = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] processed_images.append(image) if all(x.shape == processed_images[0].shape for x in processed_images): processed_images = torch.stack(processed_images, dim=0) return processed_images def text_process(self,text,tokenizer): prompt=f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n\n{text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" text_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][1:], dtype=torch.long).unsqueeze(0) return input_ids AutoConfig.register("mixsense_llama", MixsenseConfig) AutoModelForCausalLM.register(MixsenseConfig, MixsenseLlamaForCausalLM)