--- license: mit base_model: prajjwal1/bert-tiny tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: MM-MM03 results: [] --- # MM-MM03 This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6872 - Accuracy: 0.57 - F1: 0.5203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.0 | 50 | 0.6915 | 0.53 | 0.3672 | | No log | 0.01 | 100 | 0.6923 | 0.53 | 0.3672 | | No log | 0.01 | 150 | 0.6919 | 0.53 | 0.3672 | | No log | 0.01 | 200 | 0.6923 | 0.54 | 0.4195 | | No log | 0.02 | 250 | 0.6924 | 0.6 | 0.5777 | | No log | 0.02 | 300 | 0.6908 | 0.54 | 0.3892 | | No log | 0.03 | 350 | 0.6893 | 0.55 | 0.4104 | | No log | 0.03 | 400 | 0.6911 | 0.57 | 0.5437 | | No log | 0.03 | 450 | 0.6904 | 0.57 | 0.5482 | | 0.6938 | 0.04 | 500 | 0.6981 | 0.47 | 0.3005 | | 0.6938 | 0.04 | 550 | 0.6953 | 0.47 | 0.3005 | | 0.6938 | 0.04 | 600 | 0.6891 | 0.56 | 0.5252 | | 0.6938 | 0.05 | 650 | 0.6871 | 0.55 | 0.4817 | | 0.6938 | 0.05 | 700 | 0.6898 | 0.56 | 0.4975 | | 0.6938 | 0.06 | 750 | 0.6899 | 0.55 | 0.4817 | | 0.6938 | 0.06 | 800 | 0.6906 | 0.51 | 0.5102 | | 0.6938 | 0.06 | 850 | 0.6934 | 0.48 | 0.48 | | 0.6938 | 0.07 | 900 | 0.6889 | 0.55 | 0.4817 | | 0.6938 | 0.07 | 950 | 0.6996 | 0.47 | 0.3175 | | 0.6929 | 0.07 | 1000 | 0.6894 | 0.59 | 0.5601 | | 0.6929 | 0.08 | 1050 | 0.6941 | 0.5 | 0.4777 | | 0.6929 | 0.08 | 1100 | 0.6927 | 0.49 | 0.4896 | | 0.6929 | 0.08 | 1150 | 0.6916 | 0.49 | 0.4903 | | 0.6929 | 0.09 | 1200 | 0.6874 | 0.56 | 0.5252 | | 0.6929 | 0.09 | 1250 | 0.6872 | 0.57 | 0.5203 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0