_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' model = dict( pretrained='open-mmlab://msra/hrnetv2_w32', backbone=dict( _delete_=True, type='HRNet', extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), neck=dict( _delete_=True, type='HRFPN', in_channels=[32, 64, 128, 256], out_channels=256)) # learning policy lr_config = dict(step=[16, 19]) runner = dict(type='EpochBasedRunner', max_epochs=20)