import torch from torchvision import datasets, transforms import torch.nn as nn import torch.optim as optim # Define your model class class TatsukichiHayamaClassifier(nn.Module): # ... (your model definition) # Load dataset from PyTorch's ImageFolder train_dataset = datasets.ImageFolder(root="TatsukichiHayamaDataset", transform=transforms.ToTensor()) # Create a DataLoader for training dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) # Create an instance of TatsukichiHayamaClassifier your_num_classes = 10 # Adjust this based on your dataset model = TatsukichiHayamaClassifier(num_classes=your_num_classes) # Model, criterion, and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Training loop num_epochs = 10 for epoch in range(num_epochs): model.train() for images, labels in dataloader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}')