# coding=utf-8 # Copyright 2022 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_accelerate_available, is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def get_some_linear_layer(model): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_4h_to_h if is_accelerate_available(): from accelerate import PartialState from accelerate.logging import get_logger logger = get_logger(__name__) _ = PartialState() if is_torch_available(): import torch import torch.nn as nn class LoRALayer(nn.Module): """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only""" def __init__(self, module: nn.Module, rank: int): super().__init__() self.module = module self.adapter = nn.Sequential( nn.Linear(module.in_features, rank, bias=False), nn.Linear(rank, module.out_features, bias=False), ) small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight, std=small_std) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def forward(self, input, *args, **kwargs): return self.module(input, *args, **kwargs) + self.adapter(input) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class BaseMixedInt8Test(unittest.TestCase): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module model_name = "bigscience/bloom-1b7" # Constant values EXPECTED_RELATIVE_DIFFERENCE = ( 1.540025 # This was obtained on a Quadro RTX 8000 so the number might slightly change ) input_text = "Hello my name is" EXPECTED_OUTPUT = "Hello my name is John.\nI am a friend of the family.\n" MAX_NEW_TOKENS = 10 def setUp(self): # Models and tokenizer self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) class MixedInt8Test(BaseMixedInt8Test): def setUp(self): super().setUp() # Models and tokenizer self.model_fp16 = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16, device_map="auto" ) self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.model_fp16 del self.model_8bit gc.collect() torch.cuda.empty_cache() def test_quantization_config_json_serialization(self): r""" A simple test to check if the quantization config is correctly serialized and deserialized """ config = self.model_8bit.config self.assertTrue(hasattr(config, "quantization_config")) _ = config.to_dict() _ = config.to_diff_dict() _ = config.to_json_string() def test_memory_footprint(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from bitsandbytes.nn import Int8Params mem_fp16 = self.model_fp16.get_memory_footprint() mem_8bit = self.model_8bit.get_memory_footprint() self.assertAlmostEqual(mem_fp16 / mem_8bit, self.EXPECTED_RELATIVE_DIFFERENCE) self.assertTrue(get_some_linear_layer(self.model_8bit).weight.__class__ == Int8Params) def test_linear_are_8bit(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from transformers import T5PreTrainedModel self.model_fp16.get_memory_footprint() self.model_8bit.get_memory_footprint() for name, module in self.model_8bit.named_modules(): if isinstance(module, torch.nn.Linear): if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules: self.assertTrue(module.weight.dtype == torch.int8) def test_llm_skip(self): r""" A simple test to check if `llm_int8_skip_modules` works as expected """ import bitsandbytes as bnb quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["classifier"]) seq_classification_model = AutoModelForSequenceClassification.from_pretrained( "roberta-large-mnli", quantization_config=quantization_config ) self.assertTrue(seq_classification_model.roberta.encoder.layer[0].output.dense.weight.dtype == torch.int8) self.assertTrue( isinstance(seq_classification_model.roberta.encoder.layer[0].output.dense, bnb.nn.Linear8bitLt) ) self.assertTrue(isinstance(seq_classification_model.classifier.dense, nn.Linear)) self.assertTrue(seq_classification_model.classifier.dense.weight.dtype != torch.int8) self.assertTrue(isinstance(seq_classification_model.classifier.out_proj, nn.Linear)) self.assertTrue(seq_classification_model.classifier.out_proj != torch.int8) def test_generate_quality(self): r""" Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = self.model_8bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) def test_generate_quality_config(self): r""" Test that loading the model with the config is equivalent """ bnb_config = BitsAndBytesConfig() bnb_config.load_in_8bit = True model_8bit_from_config = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=bnb_config, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_8bit_from_config.generate( input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10 ) self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) def test_warns_save_pretrained(self): r""" Test whether trying to save a model after converting it in 8-bit will throw a warning. """ with self.assertWarns(UserWarning), tempfile.TemporaryDirectory() as tmpdirname: self.model_8bit.save_pretrained(tmpdirname) def test_raise_if_config_and_load_in_8bit(self): r""" Test that loading the model with the config and `load_in_8bit` raises an error """ bnb_config = BitsAndBytesConfig() with self.assertRaises(ValueError): _ = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=bnb_config, load_in_8bit=True, device_map="auto", llm_int8_enable_fp32_cpu_offload=True, ) def test_device_and_dtype_assignment(self): r""" Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. Checks also if other models are casted correctly. """ with self.assertRaises(ValueError): # Tries with `str` self.model_8bit.to("cpu") with self.assertRaises(ValueError): # Tries with a `dtype`` self.model_8bit.to(torch.float16) with self.assertRaises(ValueError): # Tries with a `device` self.model_8bit.to(torch.device("cuda:0")) with self.assertRaises(ValueError): # Tries with a `device` self.model_8bit.float() with self.assertRaises(ValueError): # Tries with a `device` self.model_8bit.half() # Test if we did not break anything encoded_input = self.tokenizer(self.input_text, return_tensors="pt") self.model_fp16 = self.model_fp16.to(torch.float32) _ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) # Check this does not throw an error _ = self.model_fp16.to("cpu") # Check this does not throw an error _ = self.model_fp16.half() # Check this does not throw an error _ = self.model_fp16.float() def test_fp32_int8_conversion(self): r""" Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly. """ model = AutoModelForSeq2SeqLM.from_pretrained("t5-small", load_in_8bit=True, device_map="auto") self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) def test_int8_serialization(self): r""" Test whether it is possible to serialize a model in 8-bit. """ from bitsandbytes.nn import Int8Params with tempfile.TemporaryDirectory() as tmpdirname: self.model_8bit.save_pretrained(tmpdirname) # check that the file `quantization_config` is present config = AutoConfig.from_pretrained(tmpdirname) self.assertTrue(hasattr(config, "quantization_config")) model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto") linear = get_some_linear_layer(model_from_saved) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertEqual( self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT ) def test_int8_serialization_sharded(self): r""" Test whether it is possible to serialize a model in 8-bit - sharded version. """ from bitsandbytes.nn import Int8Params with tempfile.TemporaryDirectory() as tmpdirname: self.model_8bit.save_pretrained(tmpdirname, max_shard_size="200MB") # check that the file `quantization_config` is present config = AutoConfig.from_pretrained(tmpdirname) self.assertTrue(hasattr(config, "quantization_config")) model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname) linear = get_some_linear_layer(model_from_saved) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertEqual( self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT ) def test_int8_from_pretrained(self): r""" Test whether loading a 8bit model from the Hub works as expected """ from bitsandbytes.nn import Int8Params model_id = "ybelkada/bloom-1b7-8bit" model = AutoModelForCausalLM.from_pretrained(model_id) linear = get_some_linear_layer(model) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class MixedInt8T5Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.model_name = "t5-small" cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) cls.input_text = "Translate in German: Hello, my dog is cute" def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ gc.collect() torch.cuda.empty_cache() def test_inference_without_keep_in_fp32(self): r""" Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test both cases. """ from transformers import T5ForConditionalGeneration modules = T5ForConditionalGeneration._keep_in_fp32_modules T5ForConditionalGeneration._keep_in_fp32_modules = None # test with `t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_8bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) T5ForConditionalGeneration._keep_in_fp32_modules = modules def test_inference_with_keep_in_fp32(self): r""" Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test both cases. """ import bitsandbytes as bnb from transformers import T5ForConditionalGeneration # test with `t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt)) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_8bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) def test_inference_with_keep_in_fp32_serialized(self): r""" Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly on a serialized model. `flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test both cases. """ import bitsandbytes as bnb from transformers import T5ForConditionalGeneration # test with `t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) model = T5ForConditionalGeneration.from_pretrained(tmp_dir) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt)) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_8bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) class MixedInt8ModelClassesTest(BaseMixedInt8Test): def setUp(self): super().setUp() # model_name self.model_name = "bigscience/bloom-560m" self.seq_to_seq_name = "t5-small" # Different types of model self.base_model = AutoModel.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") # Sequence classification model self.sequence_model = AutoModelForSequenceClassification.from_pretrained( self.model_name, load_in_8bit=True, device_map="auto" ) # CausalLM model self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") # Seq2seq model self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained( self.seq_to_seq_name, load_in_8bit=True, device_map="auto" ) def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.base_model del self.sequence_model del self.model_8bit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def test_correct_head_class(self): r""" A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification) are kept in their native class. """ from bitsandbytes.nn import Int8Params # last param of a base model should be a linear8bit module self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Int8Params) # Other heads should be nn.Parameter self.assertTrue(self.model_8bit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class MixedInt8TestPipeline(BaseMixedInt8Test): def setUp(self): super().setUp() def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.pipe gc.collect() torch.cuda.empty_cache() def test_pipeline(self): r""" The aim of this test is to verify that the mixed int8 is compatible with `pipeline` from transformers. Since we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything on pipline. """ # self._clear_cuda_cache() self.pipe = pipeline( "text-generation", model=self.model_name, model_kwargs={"device_map": "auto", "load_in_8bit": True}, max_new_tokens=self.MAX_NEW_TOKENS, ) # Real second forward pass pipeline_output = self.pipe(self.input_text) self.assertEqual(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUT) @require_torch_multi_gpu class MixedInt8TestMultiGpu(BaseMixedInt8Test): def setUp(self): super().setUp() def test_multi_gpu_loading(self): r""" This tests that the model has been loaded and can be used correctly on a multi-GPU setup. Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice """ model_parallel = AutoModelForCausalLM.from_pretrained( self.model_name, load_in_8bit=True, device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1}) # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Second real batch output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertEqual(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) @require_torch_multi_gpu class MixedInt8TestCpuGpu(BaseMixedInt8Test): def setUp(self): super().setUp() def check_inference_correctness(self, model): # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Check the exactness of the results output_parallel = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) # Get the generation output_text = self.tokenizer.decode(output_parallel[0], skip_special_tokens=True) self.assertEqual(output_text, self.EXPECTED_OUTPUT) def test_cpu_gpu_loading_random_device_map(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a random `device_map`. """ device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": 0, "lm_head": 0, "transformer.h.0": "cpu", "transformer.h.1": "cpu", "transformer.h.2": 0, "transformer.h.3": 0, "transformer.h.4": 0, "transformer.h.5": 0, "transformer.h.6": 0, "transformer.h.7": 0, "transformer.h.8": 0, "transformer.h.9": 1, "transformer.h.10": 0, "transformer.h.11": 1, "transformer.h.12": 0, "transformer.h.13": 0, "transformer.h.14": 1, "transformer.h.15": 0, "transformer.h.16": 0, "transformer.h.17": 1, "transformer.h.18": 1, "transformer.h.19": 0, "transformer.h.20": 1, "transformer.h.21": 1, "transformer.h.22": 0, "transformer.h.23": 0, "transformer.ln_f": 1, } bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, quantization_config=bnb_config, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"}) self.check_inference_correctness(model_8bit) def test_cpu_gpu_loading_custom_device_map(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time the device map is more organized than the test above and uses the abstraction `transformer.h` to encapsulate all the decoder layers. """ device_map = { "transformer.word_embeddings": "cpu", "transformer.word_embeddings_layernorm": "cpu", "lm_head": "cpu", "transformer.h": 0, "transformer.ln_f": 1, } bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) # Load model model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, quantization_config=bnb_config, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"}) self.check_inference_correctness(model_8bit) def test_cpu_gpu_disk_loading_custom_device_map(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time we also add `disk` on the device_map. """ device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": "cpu", "lm_head": 0, "transformer.h": 1, "transformer.ln_f": "disk", } bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) with tempfile.TemporaryDirectory() as tmpdirname: # Load model model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, quantization_config=bnb_config, offload_folder=tmpdirname, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"}) self.check_inference_correctness(model_8bit) def test_cpu_gpu_disk_loading_custom_device_map_kwargs(self): r""" A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. This time we also add `disk` on the device_map - using the kwargs directly instead of the quantization config """ device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": "cpu", "lm_head": 0, "transformer.h": 1, "transformer.ln_f": "disk", } with tempfile.TemporaryDirectory() as tmpdirname: # Load model model_8bit = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=device_map, llm_int8_enable_fp32_cpu_offload=True, offload_folder=tmpdirname, ) # Check that the model has been correctly set on device 0, 1, and `cpu`. self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"}) self.check_inference_correctness(model_8bit) class MixedInt8TestTraining(BaseMixedInt8Test): def setUp(self): self.model_name = "facebook/opt-350m" super().setUp() def test_training(self): if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"): return # Step 1: freeze all parameters model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True) self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()}) for param in model.parameters(): param.requires_grad = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability param.data = param.data.to(torch.float32) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(module)): module.q_proj = LoRALayer(module.q_proj, rank=16) module.k_proj = LoRALayer(module.k_proj, rank=16) module.v_proj = LoRALayer(module.v_proj, rank=16) # Step 3: dummy batch batch = self.tokenizer("Test batch ", return_tensors="pt").to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): out = model.forward(**batch) out.logits.norm().backward() for module in model.modules(): if isinstance(module, LoRALayer): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(module, nn.Embedding): self.assertTrue(module.weight.grad is None) class MixedInt8GPT2Test(MixedInt8Test): model_name = "gpt2-xl" EXPECTED_RELATIVE_DIFFERENCE = 1.8720077507258357 EXPECTED_OUTPUT = "Hello my name is John Doe, and I'm a big fan of" def test_int8_from_pretrained(self): r""" Test whether loading a 8bit model from the Hub works as expected """ from bitsandbytes.nn import Int8Params model_id = "ybelkada/gpt2-xl-8bit" model = AutoModelForCausalLM.from_pretrained(model_id) linear = get_some_linear_layer(model) self.assertTrue(linear.weight.__class__ == Int8Params) self.assertTrue(hasattr(linear.weight, "SCB")) # generate encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)