{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f63ab1e4090>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677106009979368362, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANubqT/tdlq+NuPhPiOAUT99qQY806JoP7ot+77pl7i/L5j6PqmOFL328+Q/47OMPmu9Wr9aZI0/98zrvgjEbj7Pjym/T8JWP4yqRz8bLMu8VhrRPiQAKT9/sry+dHmdP+EtaD80uRk/TDzMv54Vir+SE449zfk5QBjHdsBcti8+3kaPv3EduL/Xlo0/QpFKvmv7+T44h1C9Ja2AP3RJt76ikaW/vXiUPJxuiL9R9h2/40VDv4y/BD4u0EU/qKpTvKMk+b7OAhY8EggQv6kBej/hLWg/NLkZPzRxID+eFYq/q7HFP3+Ntb5Sec8+aL2zP4uDUb+iog4+S70uPsyV5b/Xmfk+sEKzvDloPEAYmUa/oppcvx8TlT9zFnq/arXtPsCsjr9UrO4+NcFJP2UJgL2FVAE+gAkiP+O2aL70Trk/4iGNvzS5GT80cSA/nhWKv4s/Jr9nSEA/LkWFPmG+gz/mp94/KNKKvMSyNL/cxS4+eQr6Pl9M4Ly7Nyu/CgI+P8NzgT6sD7M/opkjPxm12j4h+gc/MaD5P5K9Sz/2Gse9wGv2voL5Hz0tMJc+e2q6PeIhjb80uRk/TDzMv9ZNbT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADuJK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUp+HPQAAAAA5ZQDAAAAAAI2ytL0AAAAAQ+/8PwAAAADsg3W9AAAAAJJx2j8AAAAAuWVZvAAAAAAObey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBUNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCzUOr0AAAAA9tzpvwAAAABZvAA9AAAAABVl/z8AAAAAIlhnvQAAAACsNto/AAAAAJQTA74AAAAAX5DqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALARjDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC/Pde9AAAAANrP/b8AAAAAQOJQvQAAAABSQ9w/AAAAANdo6zwAAAAA0kvxPwAAAACRRtS9AAAAACnX/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFdjI1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6d+tPQAAAAAKiPO/AAAAAHcZMT0AAAAAXy/rPwAAAABRfg0+AAAAAJW87j8AAAAAj5F3PQAAAACD5tu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLAYoOQQtmMAWyUTegDjAF0lEdAs51BinYQKHV9lChoBkdAorfDJ6po9WgHTegDaAhHQLOdbA8Swnp1fZQoaAZHQKE9ZRYRuj1oB03oA2gIR0CznYZJGvwFdX2UKGgGR0Ch9q26shgWaAdN6ANoCEdAs6FBOnEVFnV9lChoBkdAoZsg+Y+jd2gHTegDaAhHQLOj1XL/0d11fZQoaAZHQKJuPmOlwcZoB03oA2gIR0Czo/4g7o0RdX2UKGgGR0ChhRP/7zkIaAdN6ANoCEdAs6QYZeiSJXV9lChoBkdAoWBXc1wYL2gHTegDaAhHQLOprQJokAx1fZQoaAZHQKJCwp1ie/ZoB03oA2gIR0CzrE82R7qqdX2UKGgGR0ChtwaFuejEaAdN6ANoCEdAs6x392ovSXV9lChoBkdAn9LAWN3np2gHTegDaAhHQLOslDCP6sR1fZQoaAZHQKEuqhPCVKRoB03oA2gIR0CzsEqGgzxgdX2UKGgGR0Chqd62OQyRaAdN6ANoCEdAs7LkJY1YQ3V9lChoBkdAoZeWM85jpmgHTegDaAhHQLOzDVU+9rZ1fZQoaAZHQKHhgojOcDtoB03oA2gIR0CzsyetOmBOdX2UKGgGR0ChUqtCJGe+aAdN6ANoCEdAs7iwhUzbe3V9lChoBkdAomRKTQmeDmgHTegDaAhHQLO7TG/N7jV1fZQoaAZHQKEphujynUFoB03oA2gIR0Czu3cUEgW8dX2UKGgGR0ChaiJz1bqyaAdN6ANoCEdAs7uSjcmBv3V9lChoBkdAoNzvaURnOGgHTegDaAhHQLO/TLKFIup1fZQoaAZHQKGqYob4rSVoB03oA2gIR0CzwdkM1CPZdX2UKGgGR0Ch0BwUHpr2aAdN6ANoCEdAs8IDQpnYhHV9lChoBkdAod7uVNYbKmgHTegDaAhHQLPCHNlAeJZ1fZQoaAZHQKIXbY7JW/9oB03oA2gIR0Czx6aya/h3dX2UKGgGR0Cg8CrQw9JSaAdN6ANoCEdAs8pKpn6EanV9lChoBkdAop7r1uivgWgHTegDaAhHQLPKdogmqo91fZQoaAZHQKKpKsCDEm9oB03oA2gIR0CzypHZ5AyEdX2UKGgGR0Civ1TCUHIIaAdN6ANoCEdAs85K2qkuYnV9lChoBkdAolgQ9mpVCGgHTegDaAhHQLPRA80UGml1fZQoaAZHQKGGc66J66doB03oA2gIR0Cz0S6hL5ARdX2UKGgGR0CiCWB7E5yVaAdN6ANoCEdAs9FKoIfKZHV9lChoBkdAoc3jqyGBWmgHTegDaAhHQLPW4Ggi/wl1fZQoaAZHQKEutRVp9JBoB03oA2gIR0Cz2XhlMAWBdX2UKGgGR0CgxxkzfrKOaAdN6ANoCEdAs9mkBZIQOHV9lChoBkdAoR3YraufVmgHTegDaAhHQLPZvnanJkp1fZQoaAZHQKEmar6tT1loB03oA2gIR0Cz3X5lFtsOdX2UKGgGR0CJNCtsenyeaAdN6ANoCEdAs+AmFmFrVXV9lChoBkdAoV6GCuloDmgHTegDaAhHQLPgYreIl+p1fZQoaAZHQKKx6R3/xUhoB03oA2gIR0Cz4IzOHFgldX2UKGgGR0Cg6lRT850baAdN6ANoCEdAs+YSW0JF9nV9lChoBkdAoKtbKT0QLGgHTegDaAhHQLPoxhE0BOp1fZQoaAZHQKG+Zuw5eZ5oB03oA2gIR0Cz6PJFgDzRdX2UKGgGR0CiVUQjUutfaAdN6ANoCEdAs+kM3YL9dnV9lChoBkdAoYIwcPvrnmgHTegDaAhHQLPs0I+nqFB1fZQoaAZHQKKGTb8m8dxoB03oA2gIR0Cz75KbrkbQdX2UKGgGR0Ch+FWMKkVOaAdN6ANoCEdAs+/P9bX6InV9lChoBkdAodcYEdNnG2gHTegDaAhHQLPv92pQ1rJ1fZQoaAZHQKE8rQuVX3hoB03oA2gIR0Cz9Un4XXRPdX2UKGgGR0Ch+epN9H+ZaAdN6ANoCEdAs/fqslsxf3V9lChoBkdAoaK/YJ3PiWgHTegDaAhHQLP4FUY8+zN1fZQoaAZHQKH+zitJWeZoB03oA2gIR0Cz+DEcbR4RdX2UKGgGR0Chr/rK3d9EaAdN6ANoCEdAs/vgKqn3tnV9lChoBkdAoj1l8Rcu8WgHTegDaAhHQLP+vmce8wp1fZQoaAZHQKLku99MK1JoB03oA2gIR0Cz/vqhYeT3dX2UKGgGR0CguYZGz8gqaAdN6ANoCEdAs/8jmYBvJnV9lChoBkdAohp+NNrTIGgHTegDaAhHQLQEUZssQNF1fZQoaAZHQKJNDEZzgdhoB03oA2gIR0C0BvOwHJLedX2UKGgGR0CgScubiIcjaAdN6ANoCEdAtAcdOnEVFnV9lChoBkdAonxbsfJV82gHTegDaAhHQLQHOQxvegt1fZQoaAZHQKGRYmJm/WVoB03oA2gIR0C0Cvwa3qiXdX2UKGgGR0Ciu9evhZQpaAdN6ANoCEdAtA32mygPE3V9lChoBkdAohdRw6ySm2gHTegDaAhHQLQOOjpLVWl1fZQoaAZHQKImVt78ejpoB03oA2gIR0C0DmLBXS0CdX2UKGgGR0CinT2rGR3eaAdN6ANoCEdAtBNnB9Cu2nV9lChoBkdAoMo3RmbsnmgHTegDaAhHQLQV+mTTvy91fZQoaAZHQKGYuAz544ZoB03oA2gIR0C0FiS3G4qgdX2UKGgGR0CiSrXA2ycDaAdN6ANoCEdAtBY+Z+hGpnV9lChoBkdAltCpS75EdGgHTegDaAhHQLQZ81+AmRh1fZQoaAZHQKG0pAnlXBBoB03oA2gIR0C0HPKAvtdBdX2UKGgGR0CicYqeTV2BaAdN6ANoCEdAtB0zBacI7nV9lChoBkdAoKrDKvFFUmgHTegDaAhHQLQdXQ5FPSF1fZQoaAZHQKGiBeNT989oB03oA2gIR0C0Il6vNeMRdX2UKGgGR0Ch63SCvovBaAdN6ANoCEdAtCUOmce8w3V9lChoBkdAocy1Z3cHnmgHTegDaAhHQLQlN6shgVp1fZQoaAZHQKGqozv7WNFoB03oA2gIR0C0JVN5Qgs9dX2UKGgGR0ChEn/0VafSaAdN6ANoCEdAtCkLjsD4g3V9lChoBkdAoSA2ogmqpGgHTegDaAhHQLQsMEpiI+J1fZQoaAZHQKC2g//vOQhoB03oA2gIR0C0LHYS6DoRdX2UKGgGR0Cf3wbXYlIFaAdN6ANoCEdAtCykPmPo3nV9lChoBkdAoO/9inYQKGgHTegDaAhHQLQxYd/axot1fZQoaAZHQKGhb4ubqhVoB03oA2gIR0C0M/xV6u4gdX2UKGgGR0Cg7EfD1oQGaAdN6ANoCEdAtDQlajesP3V9lChoBkdAobV9twaR6mgHTegDaAhHQLQ0P8QqZtx1fZQoaAZHQKINxFw1ivxoB03oA2gIR0C0N/O+yquKdX2UKGgGR0ChYYV01ZTyaAdN6ANoCEdAtDsu25QP7XV9lChoBkdAoiGY2n8892gHTegDaAhHQLQ7cdszl911fZQoaAZHQJ3es/qxC6ZoB03oA2gIR0C0O53/YJ3QdX2UKGgGR0ChQSdOARTTaAdN6ANoCEdAtEBkf6oES3V9lChoBkdAoeyaWzF+/mgHTegDaAhHQLRDCt8uzyB1fZQoaAZHQKHhqdCE6DJoB03oA2gIR0C0QzXYpUgkdX2UKGgGR0CiH7pG4I8haAdN6ANoCEdAtENPgJkXlHV9lChoBkdAooXLS7Xg+GgHTegDaAhHQLRHCcGkep51fZQoaAZHQKEWRQC0WuZoB03oA2gIR0C0SmPBzmwJdX2UKGgGR0Ch015EMLF5aAdN6ANoCEdAtEqqmhufmXV9lChoBkdAoNXVOTJQtWgHTegDaAhHQLRK1xD9fkZ1fZQoaAZHQKHTFjBl+VloB03oA2gIR0C0T3gk9lmOdX2UKGgGR0Cg5jQ8OkLyaAdN6ANoCEdAtFIOy0KJEnV9lChoBkdAoEvsYGdI5GgHTegDaAhHQLRSN8Djin51fZQoaAZHQKFNo9dNWU9oB03oA2gIR0C0UlFT3qRmdX2UKGgGR0ChQBE/SpiraAdN6ANoCEdAtFYXQkX1rnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}