--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9022777369581191 - name: Recall type: recall value: 0.9191616766467066 - name: F1 type: f1 value: 0.9106414534668149 - name: Accuracy type: accuracy value: 0.9202037351443124 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.3848 - Precision: 0.9023 - Recall: 0.9192 - F1: 0.9106 - Accuracy: 0.9202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 6.25 | 250 | 0.9576 | 0.7878 | 0.8196 | 0.8034 | 0.8166 | | 1.3167 | 12.5 | 500 | 0.5210 | 0.8536 | 0.8772 | 0.8653 | 0.8846 | | 1.3167 | 18.75 | 750 | 0.4077 | 0.8798 | 0.9042 | 0.8918 | 0.9113 | | 0.2603 | 25.0 | 1000 | 0.3943 | 0.8902 | 0.9102 | 0.9001 | 0.9147 | | 0.2603 | 31.25 | 1250 | 0.3691 | 0.8980 | 0.9162 | 0.9070 | 0.9194 | | 0.1009 | 37.5 | 1500 | 0.3496 | 0.9130 | 0.9274 | 0.9202 | 0.9266 | | 0.1009 | 43.75 | 1750 | 0.3700 | 0.9078 | 0.9214 | 0.9146 | 0.9266 | | 0.056 | 50.0 | 2000 | 0.3724 | 0.9065 | 0.9214 | 0.9139 | 0.9215 | | 0.056 | 56.25 | 2250 | 0.3773 | 0.9051 | 0.9207 | 0.9128 | 0.9202 | | 0.0413 | 62.5 | 2500 | 0.3848 | 0.9023 | 0.9192 | 0.9106 | 0.9202 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1