--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3718 - Accuracy: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.92 | 3 | 0.6033 | 0.6889 | | No log | 1.85 | 6 | 0.5412 | 0.7111 | | No log | 2.77 | 9 | 0.4459 | 0.7778 | | 0.5428 | 4.0 | 13 | 0.4544 | 0.8444 | | 0.5428 | 4.92 | 16 | 0.3929 | 0.9111 | | 0.5428 | 5.85 | 19 | 0.3823 | 0.8667 | | 0.4248 | 6.77 | 22 | 0.3531 | 0.8889 | | 0.4248 | 8.0 | 26 | 0.3560 | 0.8889 | | 0.4248 | 8.92 | 29 | 0.3694 | 0.8667 | | 0.382 | 9.23 | 30 | 0.3718 | 0.8667 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0