from abc import ABC, abstractmethod from typing import Dict, Any class VegapunkSatellite(ABC): def __init__(self, name: str, specialty: str): self.name = name self.specialty = specialty self.knowledge_base = {} self.task_queue = [] @abstractmethod def process_task(self, task: Dict[str, Any]) -> Dict[str, Any]: """ Traite une tache specifique au satellite a implementer dans chaque classe de satellite specifique """ pass def add_to_knowledge_base(self, key: str, value: Any): # Ajoute une information a la base de connaissance du satellite self.knowledge_base[key] = value def get_from_knowledge_base(self, key: str) -> Any: # Recupere une information de la base de connaissance du satellite return self.knowledge_base.get(key) def add_task(self, task: Dict[str, Any]): # Ajoute une tache a la file d'attente du satellite self.task_queue.append(task) def get_next_task(self) -> Dict[str, Any]: """Récupère et supprime la prochaine tâche de la file d'attente.""" if self.task_queue: return self.task_queue.pop(0) return None def report_status(self): # Rapporte le status du satellite return { "name": self.name, "specialty": self.specialty, "knowledge_base": self.knowledge_base, "task_queue": self.task_queue, "task_pending": len(self.task_queue), "Knowledge_base_size": len(self.knowledge_base), } @abstractmethod def communicate_with_stellar(self, message: Dict[str, Any]) -> Dict[str, Any]: """ Méthode pour communiquer avec le satellite manager (Stellar). À implémenter dans chaque classe de satellite spécifique. """ pass def update_from_punkrecord(self) -> None: # Methode pour mettre a jour de la base de connaissance local du satellite depuis punkrecord pass # # # class Satellite: # def __init__(self, name, specialty): # self.name = name # self.specialty = specialty # self.llm = OpenAI(temperature=0.7) # self.memory = ConversationBufferMemory(memory_key="chat_history") # self.prompt = PromptTemplate( # input_variables=["chat_history", "human_input", "specialty"], # template="""You are {specialty}. # Chat History: {chat_history} # Human: {human_input} # AI Assistant:""" # ) # self.chain = LLMChain( # llm=self.llm, # prompt=self.prompt, # memory=self.memory, # ) # # def process(self, input_text): # return self.chain.run(human_input=input_text, specialty=self.specialty) # # # # Exemple d'utilisation # shaka = Satellite("Shaka", "an AI specializing in wisdom and general knowledge") # response = shaka.process("Tell me about the importance of knowledge.") # print(response)