--- base_model: PekingU/rtdetr_r101vd_coco_o365 datasets: keremberke/satellite-building-segmentation library_name: transformers license: mit metrics: - Average Precision (AP) - Average Recall (AR) pipeline_tag: object-detection tags: - remote sensing - object detection widget: - src: img.png output: url: img.png model-index: - name: rt-detr-finetuned-for-satellite-image-roofs-detection results: - task: type: object-detection dataset: name: keremberke/satellite-building-segmentation type: image-segmentation metrics: - type: AP (IoU=0.50:0.95) value: 0.434 name: AP @ IoU=0.50:0.95 | area=all | maxDets=100 - type: AP (IoU=0.50) value: 0.652 name: AP @ IoU=0.50 | area=all | maxDets=100 - type: AP (IoU=0.75) value: 0.464 name: AP @ IoU=0.75 | area=all | maxDets=100 - type: AP (IoU=0.50:0.95) small objects value: 0.248 name: AP @ IoU=0.50:0.95 | area=small | maxDets=100 - type: AP (IoU=0.50:0.95) medium objects value: 0.510 name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100 - type: AP (IoU=0.50:0.95) large objects value: 0.632 name: AP @ IoU=0.50:0.95 | area=large | maxDets=100 - type: AR (IoU=0.50:0.95) maxDets=1 value: 0.056 name: AR @ IoU=0.50:0.95 | area=all | maxDets=1 - type: AR (IoU=0.50:0.95) maxDets=10 value: 0.328 name: AR @ IoU=0.50:0.95 | area=all | maxDets=10 - type: AR (IoU=0.50:0.95) maxDets=100 value: 0.519 name: AR @ IoU=0.50:0.95 | area=all | maxDets=100 - type: AR (IoU=0.50:0.95) small objects value: 0.337 name: AR @ IoU=0.50:0.95 | area=small | maxDets=100 - type: AR (IoU=0.50:0.95) medium objects value: 0.601 name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100 - type: AR (IoU=0.50:0.95) large objects value: 0.714 name: AR @ IoU=0.50:0.95 | area=large | maxDets=100 --- # Model Card Roof Detection for Remote Sensing task. ## Model Details ### Model Description - **Model type:** Object Detection for Remote Sensing task. - **License:** MIT ### Model Sources - **GitHub:** [Jupyter Notebook](https://github.com/ownEyes/satellite-image-roofs-auto-annotation-sourcecode/blob/dev/notebooks/finetune_rtdetr.ipynb) - **Demo:** [Hugging Face Space](https://huggingface.co/spaces/Yifeng-Liu/satellite-image-roofs-auto-annotation) ## Limitations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForObjectDetection, AutoImageProcessor import torch import cv2 image_path=YOUR_IMAGE_PATH image = cv2.imread(image_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection") image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection") CONFIDENCE_TRESHOLD = 0.5 with torch.no_grad(): model.to(device) # load image and predict inputs = image_processor(images=image, return_tensors='pt').to(device) outputs = model(**inputs) # post-process target_sizes = torch.tensor([image.shape[:2]]).to(device) results = image_processor.post_process_object_detection( outputs=outputs, threshold=CONFIDENCE_TRESHOLD, target_sizes=target_sizes )[0] ```