{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbc4672fc00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682583412297422199, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANZs1DzIXE0/B66wvh21yL0ZE44/RF9cwFXLhr6A44U/6J8KvkLj/T/vu6++5ZYZQNJaCj4AxgbAmBn7voCMFb/F2Oc+jv36P3D5ir8Wepe/MYimPJqoDEAITyS/uEDEv3+xZr8TF9m/C7eTPtkV37/0ync/39qNP5yaeb8Xezc/w+DgP1q2kT9l2Ik/5u1GvynfnL9kGV07u1O/vtGWC8BygCQ/ZvJpPzm9db/UipI9Wqo4v/ju9r4jcQs/UFkIPrVclb3ENX6/hPgBP0Inx75/sWa/IfEWPwu3kz6v4hI/xaW8PkAfVT8QB8q+ns/cPVCKjT8U6dw+4mYCvx8orTvCJgq/3iFLv/uR8j7m9eY/Lxkbvz+NPcCMf7m9ckOjPoISdTx/Iji/oShEv+4Smz+RwwU/JGmBP9k7BL8GVsg/f7FmvxMX2b8Lt5M+2RXfv0vLYz+tTo4+vuGQPs9ekD/vmE0/mH0vv/hvVz/7Req9s6KQv79Fnz9JwpW/ahA0PxcVvj+loi28fvMdv3swpD+aO1E+KHuOP/tT3D2Vr8m/29mbv5hd+D73TdS+GnZgP3+xZr8h8RY/C7eTPq/iEj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACA4kw0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA17jxvQAAAADUcd6/AAAAAIfTlL0AAAAABeYAQAAAAABigMw9AAAAAMloAEAAAAAAF9YJPgAAAABGD+O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkTCBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDxIuL0AAAAAnzbgvwAAAADoZIW9AAAAADTE9D8AAAAAf6+pPQAAAAASiuY/AAAAAOijab0AAAAAXznhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvvCDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6ncW9AAAAADYW5L8AAAAAckRIPAAAAACFwuE/AAAAAPucPDwAAAAAq/j0PwAAAADoCA49AAAAAOrc278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjyOo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASKg9vQAAAAA7G9+/AAAAAJwB9D0AAAAAkKHyPwAAAAAl+2y9AAAAAD672j8AAAAArtoPPQAAAAAnZPq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJuP1+Vkc0eMAWyUTegDjAF0lEdAqiasibDuSnV9lChoBkdAmEX0t/WlM2gHTegDaAhHQKoskD3/PxB1fZQoaAZHQJfcRmDlHSZoB03oA2gIR0CqLy8NYr8SdX2UKGgGR0CWfsVSn+AFaAdN6ANoCEdAqjDqd+Xqq3V9lChoBkdAlYI/MOf/WGgHTegDaAhHQKo1PzmwJPZ1fZQoaAZHQJbHdKyv9tNoB03oA2gIR0CqOQZM10kodX2UKGgGR0CWAU3YL9deaAdN6ANoCEdAqjtjh5xBFHV9lChoBkdAltZpooNNJ2gHTegDaAhHQKo9MS8rZrZ1fZQoaAZHQJd9+Q0XP7hoB03oA2gIR0CqQcBVENONdX2UKGgGR0CacZ6RyOrAaAdN6ANoCEdAqkdtzOoo/nV9lChoBkdAnAYsZ9/jKmgHTegDaAhHQKpKpM5fdAR1fZQoaAZHQJsxs70WdmRoB03oA2gIR0CqTFpj2BatdX2UKGgGR0CWXllHBk7PaAdN6ANoCEdAqlCr/Ot4iXV9lChoBkdAmegDSgGr0mgHTegDaAhHQKpUfoL5RCR1fZQoaAZHQJo7Jz90ihZoB03oA2gIR0CqVumo73fydX2UKGgGR0CaNJQ+lj3FaAdN6ANoCEdAqliehsZYP3V9lChoBkdAl5+7GR3eN2gHTegDaAhHQKpc3zQu27Z1fZQoaAZHQJj3WamXPZ9oB03oA2gIR0CqYgQI+nqFdX2UKGgGR0CYcMYNiH6/aAdN6ANoCEdAqmW4d4mkWXV9lChoBkdAla0A5/9YOmgHTegDaAhHQKpnocurZJ11fZQoaAZHQJOqrUz9CNVoB03oA2gIR0Cqa/rxZuAJdX2UKGgGR0CYNJUaAFxGaAdN6ANoCEdAqm+txuKoAHV9lChoBkdAlskypNsWPGgHTegDaAhHQKpyCCdSVGF1fZQoaAZHQJoLtKGtZFJoB03oA2gIR0Cqc7zfJmuldX2UKGgGR0CaIbJlrdnCaAdN6ANoCEdAqngY6+36RHV9lChoBkdAm8g4u01IiGgHTegDaAhHQKp8pEYwZfl1fZQoaAZHQJrLH+VC5VhoB03oA2gIR0CqgHSTpxFRdX2UKGgGR0Ccy067/XGwaAdN6ANoCEdAqoMUYZVGTnV9lChoBkdAm91YcR15jmgHTegDaAhHQKqHaNFSbYt1fZQoaAZHQJsZXWH1vl5oB03oA2gIR0CqiyqiGnGbdX2UKGgGR0Cb6hFt8/liaAdN6ANoCEdAqo2IqmTC+HV9lChoBkdAmYjEth/iHmgHTegDaAhHQKqPRtLteD51fZQoaAZHQJtMiXWvr4ZoB03oA2gIR0Cqk4wAU+LWdX2UKGgGR0Ce4DP6be/IaAdN6ANoCEdAqpdZbY9PlHV9lChoBkdAnaWPPszEaWgHTegDaAhHQKqa2DaoMrp1fZQoaAZHQJ8MqoFV1fVoB03oA2gIR0CqnYQnx8UmdX2UKGgGR0Cdl2suFpPAaAdN6ANoCEdAqqKQow22onV9lChoBkdAnBonGS6lL2gHTegDaAhHQKqmOc5sCT51fZQoaAZHQJxy7HhjvuxoB03oA2gIR0CqqJvQWvbHdX2UKGgGR0CbPBFRHf/FaAdN6ANoCEdAqqpdy5qdpnV9lChoBkdAmUCOWBz3iGgHTegDaAhHQKqutKjBVMp1fZQoaAZHQJxP+JO32EloB03oA2gIR0Cqsl1B2OhkdX2UKGgGR0Cbm/5oGpuNaAdN6ANoCEdAqrVJLf1pTXV9lChoBkdAm/X8A3kxRGgHTegDaAhHQKq37MRpUPx1fZQoaAZHQJp1a/RE4NtoB03oA2gIR0Cqvb19v0iAdX2UKGgGR0CZlrlVLi++aAdN6ANoCEdAqsGbN8ma6XV9lChoBkdAm2n2yHEdemgHTegDaAhHQKrED4C6pYN1fZQoaAZHQJvZJ/z8P4FoB03oA2gIR0CqxchNucc3dX2UKGgGR0CaME5KODJ2aAdN6ANoCEdAqsobQJHAh3V9lChoBkdAnyAOwC8vmGgHTegDaAhHQKrNwNvOyFB1fZQoaAZHQJ6V7rgOz6doB03oA2gIR0Cq0BRDLKV6dX2UKGgGR0Ccnlm5lOGkaAdN6ANoCEdAqtJ1p7CzknV9lChoBkdAnzenqeK8+WgHTegDaAhHQKrZBzGxUvR1fZQoaAZHQJ48mEDhcZ9oB03oA2gIR0Cq3MKji4rjdX2UKGgGR0CclWra/RE4aAdN6ANoCEdAqt8rc2zfJnV9lChoBkdAnTtPNVzZH2gHTegDaAhHQKrg6quKXOZ1fZQoaAZHQJ692ff4yoJoB03oA2gIR0Cq5T71RLsbdX2UKGgGR0Ce6f4Cp3otaAdN6ANoCEdAquj2pKjBVXV9lChoBkdAnsMljd56dGgHTegDaAhHQKrrdQk5ZKZ1fZQoaAZHQJ7lWN5t3wFoB03oA2gIR0Cq7VXxOLzgdX2UKGgGR0CdGSx1PnB+aAdN6ANoCEdAqvPSnaWX1XV9lChoBkdAnRRmPYFqz2gHTegDaAhHQKr4H4gzP8h1fZQoaAZHQJ65/A8B+4NoB03oA2gIR0Cq+nluWKMvdX2UKGgGR0CdJMUPxx1gaAdN6ANoCEdAqvwvSpiqhnV9lChoBkdAncSO5SWJJ2gHTegDaAhHQKsAfpztCzF1fZQoaAZHQJyRjGjsUqRoB03oA2gIR0CrBD0cwQDndX2UKGgGR0CduFpxm03PaAdN6ANoCEdAqwaevpyIYXV9lChoBkdAnOumy5Zr6GgHTegDaAhHQKsIWprk8zR1fZQoaAZHQJqO0ht+CshoB03oA2gIR0CrDkIQnQY2dX2UKGgGR0CXK5abnX/YaAdN6ANoCEdAqxNlu76HkHV9lChoBkdAmw7b6guh9WgHTegDaAhHQKsVxz8xbjd1fZQoaAZHQJwiUF0PpY9oB03oA2gIR0CrF4lPi1iOdX2UKGgGR0Ca4KTd+G47aAdN6ANoCEdAqxvE7+1jRXV9lChoBkdAm2WH8XN1Q2gHTegDaAhHQKsfcBJ7LMd1fZQoaAZHQJ5aukUKzAxoB03oA2gIR0CrIcrgwXZXdX2UKGgGR0Cbnj8SPEKmaAdN6ANoCEdAqyN+YF7laXV9lChoBkdAnO7sZgogFGgHTegDaAhHQKsois7uDz11fZQoaAZHQJxi5bxEv01oB03oA2gIR0CrLnr/sE7odX2UKGgGR0CdOMtPYWcjaAdN6ANoCEdAqzEHogV45nV9lChoBkdAm22r/bTMJWgHTegDaAhHQKsyu9CeEqV1fZQoaAZHQJ0FcDW9US9oB03oA2gIR0CrNw/IsAeadX2UKGgGR0CdT3KpkwvhaAdN6ANoCEdAqzrCEg4ffXV9lChoBkdAnJgVbeMyamgHTegDaAhHQKs9FO1v2oN1fZQoaAZHQJwZixjawlloB03oA2gIR0CrPsvUz9CNdX2UKGgGR0CbpSwX668QaAdN6ANoCEdAq0Mkqaw2VHV9lChoBkdAmEBnEMspX2gHTegDaAhHQKtIvR1HOKR1fZQoaAZHQJpBYG+sYEZoB03oA2gIR0CrTCHf2saLdX2UKGgGR0Caux8MNMGpaAdN6ANoCEdAq03dgx8D0XV9lChoBkdAnXbXWjGkvmgHTegDaAhHQKtSKQBgeBB1fZQoaAZHQJsnh+3H7xdoB03oA2gIR0CrVeEbxVhkdX2UKGgGR0CdFw6vq1PWaAdN6ANoCEdAq1hK3d9DyHV9lChoBkdAnTKstoSL62gHTegDaAhHQKtaA9ovi991fZQoaAZHQJ0RnAN5MURoB03oA2gIR0CrXkYzzmOmdX2UKGgGR0CeNcx7RfF8aAdN6ANoCEdAq2M+rMkhR3V9lChoBkdAnXjsunMt9WgHTegDaAhHQKtm+cDKYAt1fZQoaAZHQJ0P1FLFn7JoB03oA2gIR0CraR4JNTLodX2UKGgGR0CcM+rELpiaaAdN6ANoCEdAq21tOKwY+HV9lChoBkdAm6t6ZML4OGgHTegDaAhHQKtxPm4Ajpt1fZQoaAZHQJrWnZXdTHdoB03oA2gIR0Crc5a4lQdkdX2UKGgGR0CbzosUZeiSaAdN6ANoCEdAq3VMpiI+GHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}