--- license: apache-2.0 --- # Intruduction We introduce Xmodel-VLM, a cutting-edge multimodal vision language model. It is designed for efficient deployment on consumer GPU servers. Our work directly confronts a pivotal industry issue by grappling with the prohibitive service costs that hinder the broad adoption of large-scale multimodal systems. Refer to [our paper](https://arxiv.org/pdf/2405.09215) and [github](https://github.com/XiaoduoAILab/XmodelVLM) for more details! To use Xmodel_VLM for the inference, all you need to do is to input a few lines of codes as demonstrated below. **However, please make sure that you are using the latest code and related virtual environments.** ## Inference example ``` import sys import torch import argparse from PIL import Image from pathlib import Path import time sys.path.append(str(Path(__file__).parent.parent.resolve())) from xmodelvlm.model.xmodelvlm import load_pretrained_model from xmodelvlm.conversation import conv_templates, SeparatorStyle from xmodelvlm.utils import disable_torch_init, process_images, tokenizer_image_token, KeywordsStoppingCriteria from xmodelvlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN def inference_once(args): disable_torch_init() model_name = args.model_path.split('/')[-1] tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.load_8bit, args.load_4bit) images = [Image.open(args.image_file).convert("RGB")] images_tensor = process_images(images, image_processor, model.config).to(model.device, dtype=torch.float16) conv = conv_templates[args.conv_mode].copy() conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + args.prompt) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 # Input input_ids = (tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()) stopping_criteria = KeywordsStoppingCriteria([stop_str], tokenizer, input_ids) # Inference with torch.inference_mode(): start_time = time.time() output_ids = model.generate( input_ids, images=images_tensor, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, top_p=args.top_p, num_beams=args.num_beams, max_new_tokens=args.max_new_tokens, use_cache=True, stopping_criteria=[stopping_criteria], ) end_time = time.time() execution_time = end_time-start_time print("the execution time (secend): ", execution_time) # Result-Decode input_token_len = input_ids.shape[1] n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() if n_diff_input_output > 0: print(f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids") outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] outputs = outputs.strip() if outputs.endswith(stop_str): outputs = outputs[: -len(stop_str)] print(f"🚀 {model_name}: {outputs.strip()}\n") if __name__ == '__main__': model_path = "XiaoduoAILab/Xmodel_VLM" # model weight file image_file = "assets/demo.jpg" # image file prompt_str = "Who is the author of this book?\nAnswer the question using a single word or phrase." # (or) What is the title of this book? # (or) Is this book related to Education & Teaching? args = type('Args', (), { "model_path": model_path, "image_file": image_file, "prompt": prompt_str, "conv_mode": "v1", "temperature": 0, "top_p": None, "num_beams": 1, "max_new_tokens": 512, "load_8bit": False, "load_4bit": False, })() inference_once(args) ```
Prompt: **Who is the author of this book?\nAnswer the question using a single word or phrase.** ![Book Cover](https://github.com/XiaoduoAILab/XmodelVLM/blob/main/assets/demo.jpg?raw=true) Author: **Susan Wise Bauer**
## Evaluation We evaluate the multimodal performance across a variety of datasets: **VizWiz**, **SQAI**, **VQAT**, **POPE**, **GQA**, **MMB**, **MMBCN** , **MM-Vet**, and **MME**. Our analysis, as depicted In the following table. | Method | LLM | Res. | VizWiz | SQA | VQA | POPE | GQA | MMB | MMBCN | MM-Vet | MME | |:--------------:|:----------------:|:----:|:------:|:----:|:----:|:----:|:----:|:----:|:--------:|:------:|:------:| | Openflamingo | MPT-7B | 336 | - | - | 33.6 | - | - | 4.6 | - | - | - | | BLIP-2 | Vicuna-13B | 224 | - | 61.0 | 42.5 | 85.3 | 41.0 | - | - | - | 1293.8 | | MiniGPT-4 | Vicuna-7B | 224 | - | - | - | - | 32.2 | 23.0 | - | - | 581.7 | | InstructBLIP | Vicuna-7B | 224 | - | 60.5 | 50.1 | - | 49.2 | - | - | - | - | | InstructBLIP | Vicuna-13B | 224 | - | 63.1 | 50.7 | 78.9 | 49.5 | - | - | - | 1212.8 | | Shikra | Vicuna-13B | 224 | - | - | - | - | - | 58.8 | - | - | - | | Qwen-VL | Qwen-7B | 448 | - | 67.1 | 63.8 | - | 59.3 | 38.2 | - | - | 1487.6 | | MiniGPT-v2 | LLaMA-7B | 448 | - | - | - | - | 60.3 | 12.2 | - | - | - | | LLaVA-v1.5-13B | Vicuna-13B | 336 | 53.6 | 71.6 | 61.3 | 85.9 | 63.3 | 67.7 | 63.6 | 35.4 | 1531.3 | | MobileVLM 1.7 | MobileLLaMA 1.4B | 336 | 26.3 | 54.7 | 41.5 | 84.5 | 56.1 | 53.2 | 16.67 | 21.7 | 1196.2 | | **Xmodel-VLM** | **Xmodel-LM 1.1B** | **336** | **41.7** | **53.3** | **39.9** | **85.9** | **58.3** | **52.0** | **45.7** | **21.8** | **1250.7** |