# Copyright (c) 2023 XiaoDuo AI. All rights reserved. from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from typing_extensions import Self logger = logging.get_logger(__name__) class XModelConfig(PretrainedConfig): model_type = "xmodel" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=65280, hidden_size=4096, intermediate_size=None, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="silu", max_position_embeddings=131072, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=500000.0, rope_scaling=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size # self.intermediate_size = intermediate_size if intermediate_size is None: self.intermediate_size = find_multiple(int(8 * hidden_size / 3), 256) else: self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.auto_map = { "AutoConfig": "configuration_xmodel.XModelConfig", "AutoModelForCausalLM": "modeling_xmodel.XModelForCausalLM" } super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) @classmethod def from_name(cls, name: str) -> Self: return cls(**xmodel_configs[name]) xmodel_configs = { "nano": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=192), "micro": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=384), "tiny": dict(num_hidden_layers=8, num_attention_heads=8, num_key_value_heads=2, hidden_size=512), "small": dict(num_hidden_layers=12, num_attention_heads=12, num_key_value_heads=3, hidden_size=768), # GPT-1 & Bert-Base "medium": dict(num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=4, hidden_size=1024), # Bert-Large "large": dict(num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=4, hidden_size=1536), "xl": dict(num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=4, hidden_size=2048), # GPT-2 "3B": dict(num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=4, hidden_size=2560), "7B": dict(num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_size=4096), "13B": dict(num_hidden_layers=40, num_attention_heads=40, num_key_value_heads=40, hidden_size=5120), "34B": dict(num_hidden_layers=48, num_attention_heads=64, num_key_value_heads=8, hidden_size=8192), "70B": dict(num_hidden_layers=80, num_attention_heads=64, num_key_value_heads=8, hidden_size=8192), # Llama } def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k)