--- base_model: facebook/nllb-200-distilled-600M library_name: transformers.js pipeline_tag: translation --- https://huggingface.co/facebook/nllb-200-distilled-600M with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` You can then perform multilingual translation like this: ```js import { pipeline } from '@xenova/transformers'; // Create a translation pipeline const translator = await pipeline('translation', 'Xenova/nllb-200-distilled-600M'); // Translate text from Hindi to French const output = await translator('जीवन एक चॉकलेट बॉक्स की तरह है।', { src_lang: 'hin_Deva', // Hindi tgt_lang: 'fra_Latn', // French }); console.log(output); // [{ translation_text: 'La vie est comme une boîte à chocolat.' }] ``` See [here](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200) for the full list of languages and their corresponding codes. --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).