--- base_model: colbert-ir/colbertv2.0 library_name: transformers.js pipeline_tag: feature-extraction --- https://huggingface.co/colbert-ir/colbertv2.0 with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` You can then use the model to compute embeddings like this: ```js import { pipeline } from '@xenova/transformers'; // Create a feature-extraction pipeline const extractor = await pipeline('feature-extraction', 'Xenova/colbertv2.0'); // Compute sentence embeddings const sentences = ['Hello world', 'This is a sentence']; const output = await extractor(sentences, { pooling: 'mean', normalize: true }); console.log(output); // Tensor { // dims: [ 2, 768 ], // type: 'float32', // data: Float32Array(768) [ -0.008133978582918644, 0.00663341861218214, ... ], // size: 768 // } ``` You can convert this Tensor to a nested JavaScript array using `.tolist()`: ```js console.log(output.tolist()); // [ // [ -0.008133978582918644, 0.00663341861218214, 0.06555338203907013, ... ], // [ -0.02630571834743023, 0.011146597564220428, 0.008737687021493912, ... ] // ] ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).