--- library_name: transformers.js tags: - pose-estimation --- https://github.com/open-mmlab/mmpose/tree/main/projects/rtmo with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform pose-estimation w/ `Xenova/RTMO-t`. ```js import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; // Load model and processor const model_id = 'Xenova/RTMO-t'; const model = await AutoModel.from_pretrained(model_id, { quantized: false, }); const processor = await AutoProcessor.from_pretrained(model_id); // Read image and run processor const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'; const image = await RawImage.read(url); const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image); // Predict bounding boxes and keypoints const { dets, keypoints } = await model({ input: pixel_values }); // Select the first image const predicted_boxes = dets.tolist()[0]; const predicted_points = keypoints.tolist()[0]; const [width, height] = original_sizes[0]; const [resized_width, resized_height] = reshaped_input_sizes[0]; // Compute scale values const xScale = width / resized_width; const yScale = height / resized_height; // Define thresholds const point_threshold = 0.3; const box_threshold = 0.3; // Parse results for (let i = 0; i < predicted_boxes.length; ++i) { const [xmin, ymin, xmax, ymax, box_score] = predicted_boxes[i]; if (box_score < box_threshold) continue; const x1 = (xmin * xScale).toFixed(2); const y1 = (ymin * yScale).toFixed(2); const x2 = (xmax * xScale).toFixed(2); const y2 = (ymax * yScale).toFixed(2); console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${box_score.toFixed(3)}`) const points = predicted_points[i]; // of shape [17, 3] for (let id = 0; id < points.length; ++id) { const label = model.config.id2label[id]; const [x, y, point_score] = points[id]; if (point_score < point_threshold) continue; console.log(` - ${label}: (${(x * xScale).toFixed(2)}, ${(y * yScale).toFixed(2)}) with score ${point_score.toFixed(3)}`); } } ``` See example output ``` Found person at [275.55, 99.07, 433.03, 753.93] with score 0.989 - nose: (348.04, 178.71) with score 0.686 - left_eye: (357.65, 166.47) with score 0.347 - right_eye: (341.15, 164.56) with score 0.331 - left_shoulder: (375.16, 258.75) with score 0.999 - right_shoulder: (312.26, 241.00) with score 0.999 - left_elbow: (381.83, 360.03) with score 0.999 - right_elbow: (291.49, 326.95) with score 0.999 - left_wrist: (399.93, 455.04) with score 0.997 - right_wrist: (335.69, 327.09) with score 0.999 - left_hip: (357.00, 457.75) with score 0.999 - right_hip: (317.68, 474.91) with score 0.998 - left_knee: (385.42, 547.58) with score 0.998 - right_knee: (339.32, 648.62) with score 0.953 - left_ankle: (384.14, 699.15) with score 0.990 - right_ankle: (357.63, 621.90) with score 0.906 Found person at [67.16, 23.39, 338.29, 783.70] with score 0.932 - left_shoulder: (157.14, 159.59) with score 0.973 - right_shoulder: (159.63, 144.00) with score 0.872 - left_elbow: (210.02, 242.90) with score 0.982 - right_elbow: (201.28, 231.61) with score 0.694 - left_wrist: (258.17, 330.94) with score 0.978 - right_wrist: (205.45, 305.74) with score 0.654 - left_hip: (231.90, 367.39) with score 0.999 - right_hip: (240.19, 365.36) with score 1.000 - left_knee: (195.22, 574.91) with score 0.999 - right_knee: (216.01, 578.60) with score 1.000 - left_ankle: (283.08, 528.39) with score 1.000 - right_ankle: (300.10, 733.43) with score 0.999 Found person at [-0.17, 75.70, 109.33, 555.50] with score 0.806 - nose: (49.95, 123.09) with score 0.385 - left_shoulder: (78.57, 171.93) with score 0.983 - right_shoulder: (30.76, 174.85) with score 0.974 - left_elbow: (91.19, 248.35) with score 0.859 - right_elbow: (19.49, 241.54) with score 0.877 - left_wrist: (93.19, 314.57) with score 0.812 - right_wrist: (6.06, 301.15) with score 0.899 - left_hip: (69.81, 313.63) with score 0.995 - right_hip: (41.66, 315.41) with score 0.997 - left_knee: (76.36, 416.84) with score 0.999 - right_knee: (44.06, 420.83) with score 0.998 - left_ankle: (83.66, 514.07) with score 0.992 - right_ankle: (44.09, 519.74) with score 0.983 Found person at [348.03, 53.31, 432.29, 526.36] with score 0.328 - left_shoulder: (395.69, 156.16) with score 1.000 - right_shoulder: (351.04, 157.42) with score 0.917 - left_elbow: (413.08, 225.16) with score 0.995 - left_wrist: (418.51, 295.31) with score 0.985 - left_hip: (387.03, 287.25) with score 0.995 - right_hip: (359.71, 286.18) with score 0.939 - left_knee: (389.06, 393.34) with score 0.992 - right_knee: (363.29, 393.47) with score 0.922 - left_ankle: (391.54, 482.10) with score 0.970 - right_ankle: (365.87, 483.47) with score 0.847 ```