--- license: apache-2.0 language: - zh --- # UniPoll: A Unified Social Media Poll Generation Framework via Multi-Objective Optimization
The official repository of the paper [UniPoll: A Unified Social Media Poll Generation Framework via Multi-Objective Optimization](https://arxiv.org/abs/2306.06851). ## Model Card for UniPoll ### Model Description - **Developed by:** [https://liyixia.me](https://liyixia.me); - **Model type:** Encoder-Decoder; - **Language(s) (NLP):** Chinese; - **License:** apache-2.0 ### Model Source - **Paper:** [UniPoll: A Unified Social Media Poll Generation Framework via Multi-Objective Optimization](https://arxiv.org/abs/2306.06851). ### Training Details - Please refer to the [paper](https://arxiv.org/abs/2306.06851) and [Github](https://github.com/X1AOX1A/UniPoll). ## Uses ```python import logging from typing import List, Tuple from transformers import AutoConfig from transformers.models.mt5.modeling_mt5 import MT5ForConditionalGeneration import jieba from functools import partial from transformers import BertTokenizer class T5PegasusTokenizer(BertTokenizer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.pre_tokenizer = partial(jieba.cut, HMM=False) def _tokenize(self, text, *arg, **kwargs): split_tokens = [] for text in self.pre_tokenizer(text): if text in self.vocab: split_tokens.append(text) else: split_tokens.extend(super()._tokenize(text)) return split_tokens def load_model(model_path): config = AutoConfig.from_pretrained(model_path) tokenizer = T5PegasusTokenizer.from_pretrained(model_path) model = MT5ForConditionalGeneration.from_pretrained(model_path, config=config) return model, tokenizer def wrap_prompt(post, comments): if not comments or comments == "": prompt="生成 和 <choices>: [SEP] {post}" return prompt.format(post=post) else: prompt="生成 <title> 和 <choices>: [SEP] {post} [SEP] {comments}" return prompt.format(post=post, comments=comments) def generate(query, model, tokenizer, num_beams=4): tokens = tokenizer(query, return_tensors="pt")["input_ids"] output = model.generate(tokens, num_beams=num_beams, max_length=100) output_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0] return output_text def post_process(raw_output: str) -> Tuple[str, str]: def same_title_choices(raw_output): raw_output = raw_output.replace("<title>", "") raw_output = raw_output.replace("<choices>", "") return raw_output.strip(), [raw_output.strip()] def split_choices(choices_str: str) -> List[str]: choices = choices_str.split("<c>") choices = [choice.strip() for choice in choices] return choices if "<title>" in raw_output and "<choices>" in raw_output: index1 = raw_output.index("<title>") index2 = raw_output.index("<choices>") if index1 > index2: logging.debug(f"idx1>idx2, same title and choices will be used.\nraw_output: {raw_output}") return same_title_choices(raw_output) title = raw_output[index1+7: index2].strip() # "你 觉得 线 上 复试 公平 吗" choices_str = raw_output[index2+9:].strip() # "公平 <c> 不 公平" choices = split_choices(choices_str) # ["公平", "不 公平"] else: logging.debug(f"missing title/choices, same title and choices will be used.\nraw_output: {raw_output}") title, choices = same_title_choices(raw_output) def remove_blank(string): return string.replace(" ", "") title = remove_blank(title) choices = [remove_blank(choice) for choice in choices] return title, choices if __name__ == "__main__": model_path = "./UniPoll-t5" # input post and comments(optional, None) text post = "#线上复试是否能保障公平# 高考延期惹的祸,考研线上复试,那还能保证公平吗?" comments = "这个世界上本来就没有绝对的公平。你可以说一个倒数第一考了第一,但考上了他也还是啥都不会。也可以说他会利用一切机会达到目的,反正结果就是人家考的好,你还找不出来证据。线上考试,平时考倒数的人进了年级前十。平时考试有水分,线上之后,那不就是在水里考?" model, tokenizer = load_model(model_path) # load model and tokenizer query = wrap_prompt(post, comments) # wrap prompt raw_output = generate(query, model, tokenizer) # generate output title, choices = post_process(raw_output) # post process print("Raw output:", raw_output) print("Processed title:", title) print("Processed choices:", choices) ``` ## Citation ``` @misc{li2023unipoll, title={UniPoll: A Unified Social Media Poll Generation Framework via Multi-Objective Optimization}, author={Yixia Li and Rong Xiang and Yanlin Song and Jing Li}, year={2023}, eprint={2306.06851}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Contact Information If you have any questions or inquiries related to this research project, please feel free to contact: - Yixia Li: liyixia@me.com