#!/bin/bash # Script to reproduce results envs=(Hopper-v3 Walker2d-v3 Ant-v3 HalfCheetah-v3 Humanoid-v3) steps=(1000000 1000000 3000000 3000000 10000000) cnt=0 i=3 n_timesteps=100 for ((j=0;j<5;j+=1)) do nohup python -u main.py \ --env_name ${envs[i]} \ --num_steps 1000000 \ --policy_type 'MLP' \ --beta_schedule 'cosine' \ --n_timesteps ${n_timesteps}\ --ratio 0.08 \ --ac_grad_norm 2 \ --action_gradient_steps 40 \ --update_actor_target_every 2 \ --seed $j \ --cuda "cuda:${cnt}" \ > "log/MLP-a_steps=40-%2-${envs[i]}-seed=${j}.log" 2>&1 & done