---
license: apache-2.0
pipeline_tag: text-generation
library_name: peft
language:
- ru
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- danasone/wikipedia_ru
model-index:
- name: Mistral-7B-wikipedia_ru_pruned-0.1_merged
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ./datasets/ruwiki-pruned
type: completion
field: text
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./models/output
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 11
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps:
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch:
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# Mistral-7B-wikipedia_ru_pruned-0.1_merged
This model is a merge of [WlappaAI/Mistral-7B-v0.1-wikipedia_ru_pruned-0.1](https://huggingface.co/WlappaAI/Mistral-7B-v0.1-wikipedia_ru_pruned-0.1) together with [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). It's trained on modified [danasone/wikipedia_ru](https://huggingface.co/datasets/danasone/wikipedia_ru) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1876
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 11
- eval_batch_size: 11
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5643 | 0.0 | 0 | |
| 1.012 | 1.0 | 1100 | 1.1876 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0