--- license: apache-2.0 --- ## CodeShell CodeShell 是[北京大学知识计算实验室](http://se.pku.edu.cn/kcl/)与蚌壳智能科技联合研发的大规模预训练代码语言模型基座。 CodeShell的主要特点包括: * 性能强大:7B规模代码基座大模型,超过同等规模的最强基座模型(如CodeLlama-7B) * 训练高效:基于高效的数据治理体系,冷启动训练500B高质量数据 * 体系完整:模型与IDE插件全栈技术体系开源 * 轻量快速:支持本地C++部署,提供轻量的本地化解决方案 * 评测全面:提供支持完整项目上下文的代码多任务评测体系(即将开源) 本次开源的模型和工具列表如下: - CodeShell Base - CodeShell Chat - CodeShell Chat 4bit - C/C++本地化部署工具 - VS Code插件 - JetBrains插件 ## Model Use ### Code Generation Codeshell 提供了Hugging Face格式的模型,开发者可以通过下列代码快速载入并使用Codeshell。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("codeshell", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("codeshell", trust_remote_code=True).cuda() inputs = tokenizer('def print_hello_world():', return_tensors='pt').cuda() outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Fill in the Moddle CodeShell 支持Fill-in-the-Middle模式,从而更好的支持软件开发过程。 ``` input_text = "def print_hello_world():\n \n print('Hello world!')" inputs = tokenizer(input_text, return_tensors='pt').cuda() outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ## Model Quantization CodeShell 支持4 bit/8 bit量化,4 bit量化后,占用显存大小约6G。 ``` from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("codeshell", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("codeshell", trust_remote_code=True) model = model.quantize(4).cuda() inputs = tokenizer('def print_hello_world():', return_tensors='pt').cuda() outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ## CodeShell IDE Plugin ### Web API CodeShell提供了Web API部署工具,为IDE插件提供API支持。 ``` git clone git@github.com:WisdomShell/codeshell.git cd codeshell python api.py ``` CodeShell提供了C/C++版本的推理支持,在没有GPU的个人PC上也能高效使用。开发者可以根据本地环境进行编译,详见[C/C++本地化部署工具]()。编译完成后,可以通过下列命令启动Web API服务。 ``` ./server -m codeshell.gguf ``` 部署完成后,开发者可以通过Web API进行模型推理: ``` curl --location 'http://127.0.0.1:8080/completion' --header 'Content-Type: application/json' --data '{"messages": {"content": "用python写个hello world"}, "temperature": 0.2, "stream": true}' ``` ### VS Code Plugin CodeShell提供 [VS Code插件](),开发者可以通过插件进行代码补全、代码问答等操作。VS Code 插件也已开源,插件相关问题欢迎在[VS Code插件仓库]()中讨论。 ## Model Details - 模型架构 - Architecture: GPT-2 - Attention: Grouped-Query Attention with Flash Attention 2 - Position embedding: [Rotary Position Embedding](RoFormer: Enhanced Transformer with Rotary Position Embedding) - Precision: bfloat16 - 超参数 - n_layer: 42 - n_embd: 4096 - n_inner: 16384 - n_head: 32 - num_query_groups: 8 - seq-length: 8192 - vocab_size: 70144 Code Shell使用GPT-2作为基础架构,并使用Grouped-Query Attention、RoPE相对位置编码等技术。 ## Evaluation 我们选取了目前最流行的两个代码评测数据集对模型进行评估,与目前最先进的两个7b代码大模型CodeLllama与Starcoder相比,Codeshell 取得了最优的成绩。具体评测结果如下。 ### Pass@1 | 任务 | codeshell-7B | codellama-7B | starcoderbase-7B | | ------- | --------- | --------- | --------- | | humaneval | **33.48** | 29.44 | 27.80 | | mbpp | **39.08** | 37.60 | 34.16 | | multiple-java | **29.56** | 29.24 | 24.30 | | multiple-js | **33.60** | 31.30 | 27.02 | # License 本仓库开源的模型遵循[Apache 2.0 许可证](https://www.apache.org/licenses/LICENSE-2.0),对学术研究完全开放,若需要商用,开发者可发送邮件进行申请,得到书面授权后方可使用。联系邮箱:[wye@pku.edu.cn](mailto:wye@pku.edu.cn)