--- license: afl-3.0 language: - id library_name: adapter-transformers tags: - text-generation-inference --- # finetune-indoMMLU-Merak-7B-v4 Based on Merak-7B-v4 Mistral: https://huggingface.co/Ichsan2895/Merak-7B-v4
Dataset used on Fine Tuning: https://github.com/fajri91/IndoMMLU
Some training params used: ```python lora r=64 lora_alpha=16 lora_dropout=0.05 learning_rate = 2e-4 lr_scheduler = "constant" optimizer = "paged_adamw_32bit" max_seq_length = 2048 ``` Inference: ```python import torch from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, BitsAndBytesConfig, LlamaTokenizer from peft import PeftModel, PeftConfig model_name = "Ichsan2895/Merak-7B-v4" adapter_name = "Willy030125/finetune-indoMMLU-Merak-7B-v4" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", trust_remote_code=True ) model = PeftModel.from_pretrained(model, adapter_name) tokenizer = LlamaTokenizer.from_pretrained(model_name) def generate_response(question: str) -> str: chat = [ {"role": "system", "content": "Anda adalah Merak, sebuah model kecerdasan buatan yang dilatih oleh Muhammad Ichsan. Mohon jawab pertanyaan berikut dengan benar, faktual, dan ramah."}, {"role": "user", "content": question}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=True) with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), attention_mask=inputs.attention_mask, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, max_new_tokens=1024) response = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0] assistant_start = f'''{question} \n assistant\n ''' response_start = response.find(assistant_start) return response[response_start + len(assistant_start) :].strip() prompt = """Hewan pemakan tumbuhan dinamakan ... A. Omnivora B. Karnivora C. Pengurai D. Herbivora""" print(generate_response(prompt)) ```