import copy import json import os from typing import Optional, Union import librosa import numpy as np import torch import torch.nn.functional as F from datasets import Audio from safetensors.torch import load, load_model from torch import nn from .configuring_diva import DiVAConfig from transformers import ( AutoProcessor, AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, WhisperModel, ) class WhisperConnector(nn.Module): def __init__( self, ): super().__init__() self.decoder = None self.projection = nn.Linear(1280, 4096) self.query_tokens = nn.Parameter(torch.randn(448, 1280)) def forward(self, x, output_device="cuda:1"): bsz = x.shape[0] query_tokens = self.query_tokens[None, :, :].expand(bsz, -1, -1) virt_whisper_tokens = self.decoder( inputs_embeds=query_tokens, encoder_hidden_states=x ) if self.projection.weight.shape[-1] == 5120: virtual_tokens = self.projection(virt_whisper_tokens[0].reshape(112, 5120)) else: virtual_tokens = self.projection(virt_whisper_tokens[0]) return virtual_tokens.to(output_device) class DiVAModel(PreTrainedModel): config_class = DiVAConfig def __init__( self, via_path=None, config_dict={}, device_map=None, speech_encoder_device=None ): super().__init__(DiVAConfig.from_dict(config_dict)) if speech_encoder_device is None: speech_encoder_device = "cuda:0" whisper = WhisperModel.from_pretrained(config_dict["reference_encoder"]) connector = WhisperConnector() connector.decoder = copy.deepcopy(whisper.decoder) if via_path is not None: with open(via_path, "rb") as f: sd = load(f.read()) with torch.no_grad(): connector.query_tokens = nn.Parameter(sd["query_tokens"]) connector.projection.weight = nn.Parameter(sd["projection.weight"].T) connector.projection.bias = nn.Parameter(sd["projection.bias"]) wsd = { key.replace("connector.", ""): sd[key] for key in sd if key.startswith("connector.") } connector.decoder.load_state_dict(wsd) if device_map == None: num_layers = 32 num_gpus = 2 device_map = dict( **{"model.embed_tokens": 1, "model.norm": 1, "lm_head": 2}, **{ "model.layers." + str(i): 1 + (i // (num_layers // num_gpus)) for i in range(num_layers) }, ) self.connector = connector.to(speech_encoder_device) self.whisper_encoder = whisper.encoder.to(speech_encoder_device) self.llm_decoder = AutoModelForCausalLM.from_pretrained( config_dict["reference_decoder"], device_map=device_map, torch_dtype=torch.float16, ) self.processor = AutoProcessor.from_pretrained(config_dict["reference_encoder"]) self.tokenizer = AutoTokenizer.from_pretrained("WillHeld/via-llama") self.prefix = torch.tensor([128000, 128006, 882, 128007, 271]).to( self.llm_decoder.model.embed_tokens.weight.device ) self.pre_user_suffix = torch.tensor( self.tokenizer.encode( "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n" ) ).to(self.llm_decoder.model.embed_tokens.weight.device) self.final_header = torch.tensor([128009, 128006, 78191, 128007, 271]).to( self.llm_decoder.model.embed_tokens.weight.device ) self.speech_encoder_device = speech_encoder_device def can_generate(cls): return False @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, config=None, cache_dir=None, **kwargs, ): if os.path.isdir(pretrained_model_name_or_path): via_path = ( pretrained_model_name_or_path + "/model.safetensors" ) config_path = pretrained_model_name_or_path + "/config.json" else: # Loading from huggingface repo from huggingface_hub import hf_hub_download hf_hub_download( repo_id=pretrained_model_name_or_path, filename="model.safetensors", token=kwargs.get("token", None), local_dir=os.path.dirname(__file__), ) hf_hub_download( repo_id=pretrained_model_name_or_path, filename="config.json", token=kwargs.get("token", None), local_dir=os.path.dirname(__file__), ) via_path = os.path.dirname(__file__) + "/model.safetensors" config_path = os.path.dirname(__file__) + "/config.json" with open(config_path, "r") as f: config_dict = json.loads(f.read()) return cls( via_path, config_dict, kwargs["device_map"] if "device_map" in kwargs else "auto", ( kwargs["speech_encoder_device"] if "speech_encoder_device" in kwargs else None ), ) def forward(self, audio, prefix_text_tokens, suffix_text_tokens): inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000) input_features = inputs.input_features.to(self.speech_encoder_device) hidden_states = self.whisper_encoder(input_features=input_features)[ "last_hidden_state" ] virt_tokens = self.connector( hidden_states, output_device=self.llm_decoder.model.embed_tokens.weight.device, ).squeeze() prefix_embed = self.llm_decoder.model.embed_tokens(prefix_text_tokens) suffix_embed = self.llm_decoder.model.embed_tokens(suffix_text_tokens) inputs_embeds = torch.cat( [prefix_embed, virt_tokens, suffix_embed], axis=0 ).unsqueeze(0) outputs = self.llm_decoder( inputs_embeds=inputs_embeds.to( self.llm_decoder.model.embed_tokens.weight.device ).half(), return_dict=True, output_hidden_states=True, past_key_values=past_key_values, ) return outputs @torch.no_grad() def generate( self, audio, text_prompt=None, do_sample=False, logits_processor=None, max_new_tokens=128, ): inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000) input_features = inputs.input_features.to(self.speech_encoder_device) hidden_states = self.whisper_encoder(input_features=input_features)[ "last_hidden_state" ] virt_tokens = self.connector( hidden_states, output_device=self.llm_decoder.model.embed_tokens.weight.device, ) bsz = virt_tokens.shape[0] if text_prompt != None and text_prompt != "": user_prompt_text = torch.tensor( self.tokenizer( text_prompt, add_special_tokens=False, padding=True, padding_side="right", )["input_ids"], device=self.pre_user_suffix.device, ) prefix = torch.cat( [ self.pre_user_suffix.expand( bsz, -1, ), user_prompt_text, self.prefix.expand( bsz, -1, ), ], axis=1, ) else: prefix = self.prefix prefix_embed = self.llm_decoder.model.embed_tokens(prefix).expand(bsz, -1, -1) suffix = self.final_header suffix_embed = self.llm_decoder.model.embed_tokens(suffix).expand(bsz, -1, -1) inputs_embeds = torch.cat([prefix_embed, virt_tokens, suffix_embed], axis=1) outs = [[] for i in range(bsz)] complete = [False] * bsz outputs = None greedy = 1 i = 0 while not all(complete) and len(outs[0]) < max_new_tokens: past_key_values = outputs.past_key_values if outputs else None outputs = self.llm_decoder( inputs_embeds=inputs_embeds.to( self.llm_decoder.model.embed_tokens.weight.device ).half(), return_dict=True, output_hidden_states=True, past_key_values=past_key_values, ) next_token_logits = outputs.logits[:, -1, :] if logits_processor: local_outs = torch.tensor(outs) if outs != [] else suffix local_outs = local_outs.reshape(1, -1) next_token_logits = logits_processor( local_outs, next_token_logits.reshape(1, -1), ) next_token_logits = next_token_logits.flatten() if do_sample: logits = next_token_logits / temperature probs = F.softmax(logits, dim=-1) greedy = torch.multinomial(probs, num_samples=1)[0] else: greedy = next_token_logits.argmax(dim=-1) for token_index, out in enumerate(greedy.flatten().tolist()): if not complete[token_index]: outs[token_index].append(out) if out == 128009: complete[token_index] = True next_embed = self.llm_decoder.model.embed_tokens(greedy.reshape(-1, 1)) inputs_embeds = next_embed return self.tokenizer.batch_decode(outs, skip_special_tokens=True) def generate_stream( self, audio, text_prompt, do_sample=False, logits_processor=None, max_new_tokens=128, return_outputs=False, init_outputs=None, ): inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000) input_features = inputs.input_features.to(self.whisper_encoder.device) hidden_states = self.whisper_encoder(input_features=input_features)[ "last_hidden_state" ] virt_tokens = self.connector( hidden_states, output_device=self.llm_decoder.model.embed_tokens.weight.device, ).squeeze() if text_prompt != None and text_prompt != "": user_prompt_text = torch.tensor( self.tokenizer(text_prompt, add_special_tokens=False)["input_ids"], device=self.pre_user_suffix.device, ) prefix = torch.cat( [self.pre_user_suffix, user_prompt_text, self.prefix], axis=0 ) else: prefix = self.prefix prefix_embed = self.llm_decoder.model.embed_tokens(prefix) suffix = self.final_header suffix_embed = self.llm_decoder.model.embed_tokens(suffix) inputs_embeds = torch.cat( [prefix_embed, virt_tokens, suffix_embed], axis=0 ).unsqueeze(0) outs = [] outputs = init_outputs greedy = 1 i = 0 while greedy != 128009 and len(outs) < max_new_tokens: past_key_values = outputs.past_key_values if outputs else None outputs = self.llm_decoder( inputs_embeds=inputs_embeds.to( self.llm_decoder.model.embed_tokens.weight.device ).half(), return_dict=True, output_hidden_states=True, past_key_values=past_key_values, ) next_token_logits = outputs.logits[-1, -1, :] if logits_processor: local_outs = torch.tensor(outs) if outs != [] else suffix local_outs = local_outs.reshape(1, -1) next_token_logits = logits_processor( local_outs, next_token_logits.reshape(1, -1), ) next_token_logits = next_token_logits.flatten() if do_sample: logits = next_token_logits / temperature probs = F.softmax(logits, dim=-1) greedy = torch.multinomial(probs, num_samples=1)[0] else: greedy = next_token_logits.argmax() outs.append(greedy) next_embed = self.llm_decoder.model.embed_tokens(greedy.reshape(1, 1)) inputs_embeds = next_embed if not return_outputs: yield self.tokenizer.decode(outs, skip_special_tokens=True).replace( "<|eot_id|>", "" ) else: yield (self.tokenizer.decode(outs, skip_special_tokens=True).replace( "<|eot_id|>", "" ), outputs) if not return_outputs: return self.tokenizer.decode(outs, skip_special_tokens=True).replace( "<|eot_id|>", "" ) else: return (self.tokenizer.decode(outs, skip_special_tokens=True).replace( "<|eot_id|>", "" ), outputs)