--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xlsr-53-english-finetuned-ravdess-v7 results: [] --- # wav2vec2-large-xlsr-53-english-finetuned-ravdess-v7 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2583 - Accuracy: 0.6597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9468 | 0.15 | 25 | 1.0477 | 0.5833 | | 0.9825 | 0.31 | 50 | 1.0943 | 0.5556 | | 0.83 | 0.46 | 75 | 1.0094 | 0.6389 | | 0.9219 | 0.62 | 100 | 1.1035 | 0.5833 | | 0.9044 | 0.77 | 125 | 1.2343 | 0.5833 | | 0.9362 | 0.93 | 150 | 1.2651 | 0.5972 | | 0.8799 | 1.08 | 175 | 1.2690 | 0.5486 | | 0.8219 | 1.23 | 200 | 1.1401 | 0.5764 | | 0.7739 | 1.39 | 225 | 1.2107 | 0.5417 | | 0.87 | 1.54 | 250 | 1.1299 | 0.6319 | | 0.6298 | 1.7 | 275 | 0.9628 | 0.6736 | | 0.5578 | 1.85 | 300 | 1.5402 | 0.5417 | | 0.7363 | 2.01 | 325 | 1.0680 | 0.6667 | | 0.5354 | 2.16 | 350 | 0.9104 | 0.6736 | | 0.4246 | 2.31 | 375 | 0.9475 | 0.6667 | | 0.479 | 2.47 | 400 | 1.2755 | 0.6597 | | 0.5133 | 2.62 | 425 | 0.8993 | 0.7083 | | 0.3661 | 2.78 | 450 | 1.0620 | 0.6667 | | 0.3664 | 2.93 | 475 | 1.0617 | 0.6875 | | 0.4177 | 3.09 | 500 | 1.2583 | 0.6597 | | 0.4462 | 3.24 | 525 | 0.9819 | 0.7361 | | 0.3419 | 3.4 | 550 | 1.2685 | 0.6667 | | 0.5142 | 3.55 | 575 | 0.9290 | 0.75 | | 0.2887 | 3.7 | 600 | 1.0275 | 0.7153 | | 0.2485 | 3.86 | 625 | 0.7754 | 0.7778 | | 0.3065 | 4.01 | 650 | 1.0046 | 0.7431 | | 0.1812 | 4.17 | 675 | 0.9867 | 0.7361 | | 0.1541 | 4.32 | 700 | 1.1906 | 0.6875 | | 0.2993 | 4.48 | 725 | 0.9916 | 0.75 | | 0.2149 | 4.63 | 750 | 1.0387 | 0.7222 | | 0.1114 | 4.78 | 775 | 0.9461 | 0.7292 | | 0.1897 | 4.94 | 800 | 0.9165 | 0.75 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3