--- language: - en license: cc-by-nc-nd-4.0 library_name: nemo datasets: - commonvoice thumbnail: null tags: - automatic-speech-recognition - speech - audio - CTC - named-entity-recognition - emotion-classification - Transformer - NeMo - pytorch model-index: - name: 1step_ctc_ner_emotion_commonvoice500hrs results: [] --- # This speech tagger performs transcription, annotates entities, predict speaker emotion Model is suitable for voiceAI applications, real-time and offline. ## Model Details - **Model type**: NeMo ASR - **Architecture**: Conformer CTC - **Language**: English - **Training data**: CommonVoice, Gigaspeech - **Performance metrics**: [Metrics] ## Usage To use this model, you need to install the NeMo library: ```bash pip install nemo_toolkit ``` ### How to run ```python import nemo.collections.asr as nemo_asr # Step 1: Load the ASR model from Hugging Face model_name = 'WhissleAI/speech-tagger_en_ner_emotion' asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name) # Step 2: Provide the path to your audio file audio_file_path = '/path/to/your/audio_file.wav' # Step 3: Transcribe the audio transcription = asr_model.transcribe(paths2audio_files=[audio_file_path]) print(f'Transcription: {transcription[0]}') ```