--- library_name: peft tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: NousResearch/Llama-2-7b-hf model-index: - name: billm-llama-7b-conll03-ner results: [] --- # billm-llama-7b-conll03-ner This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1894 - Precision: 0.9228 - Recall: 0.9364 - F1: 0.9296 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0453 | 1.0 | 1756 | 0.1025 | 0.9064 | 0.9227 | 0.9145 | 0.9836 | | 0.0204 | 2.0 | 3512 | 0.0932 | 0.9187 | 0.9258 | 0.9222 | 0.9846 | | 0.0105 | 3.0 | 5268 | 0.1267 | 0.9183 | 0.9308 | 0.9245 | 0.9855 | | 0.0039 | 4.0 | 7024 | 0.1680 | 0.9213 | 0.9384 | 0.9298 | 0.9861 | | 0.0014 | 5.0 | 8780 | 0.1761 | 0.9228 | 0.9366 | 0.9297 | 0.9861 | | 0.0008 | 6.0 | 10536 | 0.1835 | 0.9228 | 0.9361 | 0.9294 | 0.9861 | | 0.0005 | 7.0 | 12292 | 0.1880 | 0.9233 | 0.9363 | 0.9297 | 0.9861 | | 0.0003 | 8.0 | 14048 | 0.1893 | 0.9230 | 0.9368 | 0.9298 | 0.9861 | | 0.0003 | 9.0 | 15804 | 0.1895 | 0.9228 | 0.9364 | 0.9296 | 0.9861 | | 0.0002 | 10.0 | 17560 | 0.1894 | 0.9228 | 0.9364 | 0.9296 | 0.9861 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.0.1 - Datasets 2.16.0 - Tokenizers 0.15.0