--- library_name: peft tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: NousResearch/Llama-2-7b-hf model-index: - name: billm-llama-7b-conll03-ner results: [] --- # billm-llama-7b-conll03-ner This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1664 - Precision: 0.9243 - Recall: 0.9395 - F1: 0.9319 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.048 | 1.0 | 1756 | 0.0971 | 0.8935 | 0.9082 | 0.9008 | 0.9813 | | 0.0217 | 2.0 | 3512 | 0.0963 | 0.9182 | 0.9301 | 0.9241 | 0.9852 | | 0.0113 | 3.0 | 5268 | 0.1081 | 0.9265 | 0.9348 | 0.9306 | 0.9858 | | 0.0038 | 4.0 | 7024 | 0.1477 | 0.9216 | 0.9379 | 0.9297 | 0.9858 | | 0.0016 | 5.0 | 8780 | 0.1617 | 0.9199 | 0.9370 | 0.9284 | 0.9855 | | 0.0007 | 6.0 | 10536 | 0.1618 | 0.9235 | 0.9390 | 0.9312 | 0.9859 | | 0.0005 | 7.0 | 12292 | 0.1644 | 0.9245 | 0.9395 | 0.9319 | 0.9860 | | 0.0004 | 8.0 | 14048 | 0.1662 | 0.9248 | 0.9393 | 0.9320 | 0.9861 | | 0.0003 | 9.0 | 15804 | 0.1664 | 0.9248 | 0.9395 | 0.9321 | 0.9861 | | 0.0003 | 10.0 | 17560 | 0.1664 | 0.9243 | 0.9395 | 0.9319 | 0.9860 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.0.1 - Datasets 2.16.0 - Tokenizers 0.15.0