--- license: cc-by-4.0 language: - en pipeline_tag: summarization tags: - speaker embedding - wespeaker - speaker modelling --- Official model provided by [Wespeaker](https://github.com/wenet-e2e/wespeaker) project, ResNet34 based r-vector (After large margin finetune) ## Model Sources - **Repository:** https://github.com/wenet-e2e/wespeaker - **Paper:** https://arxiv.org/pdf/2210.17016.pdf - **Demo:** https://huggingface.co/spaces/wenet/wespeaker_demo ## Results on VoxCeleb | Model | Params | Flops | LM | AS-Norm | vox1-O-clean | vox1-E-clean | vox1-H-clean | |:------|:------:|:------|:--:|:-------:|:------------:|:------------:|:------------:| | ResNet34-TSTP-emb256 | 6.63M | 4.55G | × | × | 0.867 | 1.049 | 1.959 | | | | | × | √ | 0.787 | 0.964 | 1.726 | | | | | √ | × | 0.797 | 0.937 | 1.695 | | | | | √ | √ | 0.723 | 0.867 | 1.532 | ## Install Wespeaker ``` sh pip install git+https://github.com/wenet-e2e/wespeaker.git ``` for development install: ``` sh git clone https://github.com/wenet-e2e/wespeaker.git cd wespeaker pip install -e . ``` ### Command line Usage ``` sh $ wespeaker -p ResNet34_download_dir --task embedding --audio_file audio.wav --output_file embedding.txt $ wespeaker -p ResNet34_download_dir --task embedding_kaldi --wav_scp wav.scp --output_file /path/to/embedding $ wespeaker -p ResNet34_download_dir --task similarity --audio_file audio.wav --audio_file2 audio2.wav $ wespeaker -p ResNet34_download_dir --task diarization --audio_file audio.wav ``` ### Python Programming Usage ``` python import wespeaker model = wespeaker.load_model_local(ResNet34_download_dir) # set_gpu to enable the cuda inference, number < 0 means using CPU model.set_gpu(0) # embedding/embedding_kaldi/similarity/diarization embedding = model.extract_embedding('audio.wav') utt_names, embeddings = model.extract_embedding_list('wav.scp') similarity = model.compute_similarity('audio1.wav', 'audio2.wav') diar_result = model.diarize('audio.wav') # register and recognize model.register('spk1', 'spk1_audio1.wav') model.register('spk2', 'spk2_audio1.wav') model.register('spk3', 'spk3_audio1.wav') result = model.recognize('spk1_audio2.wav') ``` ## Citation ```bibtex @article{zeinali2019rvector, title={But system description to voxceleb speaker recognition challenge 2019}, author={Zeinali, Hossein and Wang, Shuai and Silnova, Anna and Mat{\v{e}}jka, Pavel and Plchot, Old{\v{r}}ich}, journal={arXiv preprint arXiv:1910.12592}, year={2019} } @inproceedings{wang2023wespeaker, title={Wespeaker: A research and production oriented speaker embedding learning toolkit}, author={Wang, Hongji and Liang, Chengdong and Wang, Shuai and Chen, Zhengyang and Zhang, Binbin and Xiang, Xu and Deng, Yanlei and Qian, Yanmin}, booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={1--5}, year={2023}, organization={IEEE} } ```