import jax import jax.numpy as jnp import flax import flax.linen as nn from flax.core.frozen_dict import FrozenDict, unfreeze from pathlib import Path from typing import Callable from itertools import chain from typing import Any, Optional, Tuple from flax.core.frozen_dict import FrozenDict, unfreeze from transformers.modeling_flax_utils import FlaxPreTrainedModel from transformers import GPTNeoConfig,GPT2Tokenizer,file_utils from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.gpt_neo.modeling_flax_gpt_neo import FlaxGPTNeoBlockCollection from transformers.modeling_flax_outputs import FlaxBaseModelOutput from transformers.models.gpt_neo.modeling_flax_gpt_neo import FlaxGPTNeoModule from transformers.models.gpt_neo.modeling_flax_gpt_neo import FlaxGPTNeoPreTrainedModel num_choice=5 tokenizer=GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3B',pad_token='<|endoftext|>') GPT_NEO_START_DOCSTRING = r""" This model inherits from :class:`~transformers.FlaxPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen `flax.nn.Module `__ subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - `Just-In-Time (JIT) compilation `__ - `Automatic Differentiation `__ - `Vectorization `__ - `Parallelization `__ Parameters: config (:class:`~transformers.GPTNeoConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.FlaxPreTrainedModel.from_pretrained` method to load the model weights. """ GPT_NEO_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, input_ids_length)`): :obj:`input_ids_length` = ``sequence_length``. Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.GPTNeoTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ position_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. past_key_values (:obj:`Dict[str, np.ndarray]`, `optional`, returned by ``init_cache`` or when passing previous ``past_key_values``): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape `[batch_size, max_length]`. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ class FlaxGPTNeoPreTrainedModel(FlaxPreTrainedModel): #modify """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTNeoConfig base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: GPTNeoConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} return self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"] def init_cache(self, batch_size, max_length): r""" Args: batch_size (:obj:`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (:obj:`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length)) attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return init_variables["cache"] @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING) def __call__( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, past_key_values: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPT2Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, False, output_attentions, output_hidden_states, return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs class FlaxGPTNeoForMultipleChoiceModule(nn.Module): config:GPTNeoConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.transformer = FlaxGPTNeoModule(config=self.config, dtype=self.dtype) self.dropout = nn.Dropout(rate=0.2) self.classifier = nn.Dense(num_choice, dtype=self.dtype) def __call__(self,input_ids,attention_mask,position_ids,return_dict=True,deterministic=True,*args): batch_size = input_ids.shape[0] rng=jax.random.PRNGKey(0) _, dropout_rng = jax.random.split(rng) input_ids=input_ids.reshape(num_choice*batch_size,-1) position_ids=position_ids.reshape(num_choice*batch_size,-1) attention_mask=attention_mask.reshape(num_choice*batch_size,-1) outputs=self.transformer(input_ids, attention_mask,position_ids,return_dict=return_dict) hidden_states = outputs[0] hidden_states= jnp.mean(hidden_states, axis=1) hidden_states=hidden_states.reshape(batch_size,-1) #(32,8,768)->(32,8*768) dropout_output = self.dropout(hidden_states,deterministic=deterministic,rng=dropout_rng) logits = self.classifier(dropout_output) reshaped_logits = logits.reshape(-1, num_choice) #(32,4) if not return_dict: return (reshaped_logits,) + outputs[2:] return reshaped_logits class FlaxGPTNeoForMultipleChoice(FlaxGPTNeoPreTrainedModel): module_class = FlaxGPTNeoForMultipleChoiceModule