--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: Llama-2-7b-hf-finetuned-mrpc-v0.4 results: [] library_name: peft --- # Llama-2-7b-hf-finetuned-mrpc-v0.4 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4717 - Accuracy: 0.8676 - F1: 0.9046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.6000000000000003e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:| | No log | 1.0 | 230 | 0.6446 | 0.7695 | 0.6542 | | No log | 2.0 | 460 | 0.6912 | 0.7968 | 0.5938 | | 0.6489 | 3.0 | 690 | 0.7230 | 0.8151 | 0.5694 | | 0.6489 | 4.0 | 920 | 0.7230 | 0.8138 | 0.5503 | | 0.5299 | 5.0 | 1150 | 0.7402 | 0.8251 | 0.5492 | | 0.5299 | 6.0 | 1380 | 0.7794 | 0.8432 | 0.4880 | | 0.4687 | 7.0 | 1610 | 0.8064 | 0.8663 | 0.4559 | | 0.4687 | 8.0 | 1840 | 0.8186 | 0.875 | 0.4298 | | 0.374 | 9.0 | 2070 | 0.8284 | 0.8818 | 0.4210 | | 0.374 | 10.0 | 2300 | 0.8456 | 0.8916 | 0.3953 | | 0.3096 | 11.0 | 2530 | 0.8431 | 0.8897 | 0.4074 | | 0.3096 | 12.0 | 2760 | 0.8407 | 0.8862 | 0.4030 | | 0.3096 | 13.0 | 2990 | 0.8456 | 0.8904 | 0.3982 | | 0.2799 | 14.0 | 3220 | 0.8456 | 0.8881 | 0.3873 | | 0.2799 | 15.0 | 3450 | 0.8529 | 0.8940 | 0.3939 | | 0.2511 | 16.0 | 3680 | 0.8431 | 0.8877 | 0.4018 | | 0.2511 | 17.0 | 3910 | 0.8529 | 0.8947 | 0.3969 | | 0.2371 | 18.0 | 4140 | 0.8456 | 0.8912 | 0.3963 | | 0.2371 | 19.0 | 4370 | 0.8578 | 0.8964 | 0.3865 | | 0.2211 | 20.0 | 4600 | 0.8505 | 0.8928 | 0.4165 | | 0.2211 | 21.0 | 4830 | 0.4070 | 0.8456 | 0.8901 | | 0.2136 | 22.0 | 5060 | 0.4090 | 0.8578 | 0.8972 | | 0.2136 | 23.0 | 5290 | 0.4328 | 0.8578 | 0.8961 | | 0.1774 | 24.0 | 5520 | 0.4602 | 0.8382 | 0.8791 | | 0.1774 | 25.0 | 5750 | 0.4551 | 0.8627 | 0.9018 | | 0.1774 | 26.0 | 5980 | 0.4677 | 0.8505 | 0.8920 | | 0.1521 | 27.0 | 6210 | 0.4854 | 0.8578 | 0.8953 | | 0.1521 | 28.0 | 6440 | 0.5064 | 0.8505 | 0.8932 | | 0.134 | 29.0 | 6670 | 0.4971 | 0.8603 | 0.8988 | | 0.134 | 30.0 | 6900 | 0.4717 | 0.8676 | 0.9046 | ### Framework versions - PEFT 0.4.0 - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3