|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
import logging |
|
|
|
|
|
|
|
logger = logging.getLogger() |
|
logger.setLevel(logging.DEBUG) |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
logger.info("Loading model and tokenizer...") |
|
self.tokenizer = AutoTokenizer.from_pretrained(".") |
|
logger.info("tokenizer loaded...") |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(".") |
|
logger.info("model loaded...") |
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
Args: |
|
data: JSON input with structure: |
|
{ |
|
"inputs": "your text prompt here", |
|
"parameters": { |
|
"max_new_tokens": 50, |
|
"temperature": 0.7, |
|
"top_p": 0.9, |
|
"do_sample": true |
|
} |
|
} |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
logger.info("inputs loaded...", inputs) |
|
parameters = data.pop("parameters", {}) |
|
|
|
|
|
generation_config = { |
|
"max_new_tokens": parameters.get("max_new_tokens", 50), |
|
"temperature": parameters.get("temperature", 0.7), |
|
"top_p": parameters.get("top_p", 0.9), |
|
"do_sample": parameters.get("do_sample", True), |
|
"pad_token_id": self.tokenizer.eos_token_id, |
|
"num_return_sequences": parameters.get("num_return_sequences", 1) |
|
} |
|
|
|
|
|
inputs = self.tokenizer( |
|
inputs, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=512 |
|
).to(self.device) |
|
|
|
|
|
with torch.no_grad(): |
|
generated_ids = self.model.generate( |
|
inputs.input_ids, |
|
attention_mask=inputs.attention_mask, |
|
**generation_config |
|
) |
|
|
|
|
|
generated_texts = self.tokenizer.batch_decode( |
|
generated_ids, |
|
skip_special_tokens=True |
|
) |
|
|
|
return { |
|
"generated_text": generated_texts[0], |
|
"all_generations": generated_texts |
|
} |
|
|
|
|