--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8719257541 - name: NER Recall type: recall value: 0.8999042146 - name: NER F Score type: f_score value: 0.8856940844 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.4,<3.8.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (19 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `Act`, `Address`, `Court`, `EffectiveDate`, `PII_Ref`, `Parties`, `Percentage`, `Price`, `Principal`, `Ratio`, `Regulation`, `RenewalTerm`, `Rent`, `RevolvingCredit`, `Role`, `Salary`, `Shares`, `TerminationDate`, `Title` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 88.57 | | `ENTS_P` | 87.19 | | `ENTS_R` | 89.99 | | `TOK2VEC_LOSS` | 77252.72 | | `NER_LOSS` | 131420.51 |