--- tags: - generated_from_trainer datasets: - sst2 metrics: - accuracy model-index: - name: TinyBERT_SST2 results: - task: name: Text Classification type: text-classification dataset: name: sst2 type: sst2 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8428899082568807 --- # TinyBERT_SST2 This model was trained from scratch on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 1.1843 - Accuracy: 0.8429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.012 | 0.06 | 500 | 1.4602 | 0.8475 | | 0.0111 | 0.12 | 1000 | 1.4848 | 0.8475 | | 0.0277 | 0.18 | 1500 | 1.5532 | 0.8452 | | 0.0291 | 0.24 | 2000 | 1.4006 | 0.8440 | | 0.0283 | 0.3 | 2500 | 1.4589 | 0.8406 | | 0.0361 | 0.36 | 3000 | 1.2831 | 0.8429 | | 0.0261 | 0.42 | 3500 | 1.3951 | 0.8417 | | 0.04 | 0.48 | 4000 | 1.3990 | 0.8245 | | 0.0333 | 0.53 | 4500 | 1.1859 | 0.8463 | | 0.0475 | 0.59 | 5000 | 1.1699 | 0.8486 | | 0.0304 | 0.65 | 5500 | 1.2672 | 0.8394 | | 0.0323 | 0.71 | 6000 | 1.3541 | 0.8440 | | 0.0482 | 0.77 | 6500 | 1.2858 | 0.8417 | | 0.0393 | 0.83 | 7000 | 1.2595 | 0.8463 | | 0.0371 | 0.89 | 7500 | 1.2028 | 0.8314 | | 0.0444 | 0.95 | 8000 | 1.1606 | 0.8440 | | 0.0407 | 1.01 | 8500 | 1.2363 | 0.8406 | | 0.0238 | 1.07 | 9000 | 1.2556 | 0.8475 | | 0.0253 | 1.13 | 9500 | 1.2557 | 0.8475 | | 0.0234 | 1.19 | 10000 | 1.2927 | 0.8521 | | 0.0293 | 1.25 | 10500 | 1.3345 | 0.8383 | | 0.0235 | 1.31 | 11000 | 1.3742 | 0.8349 | | 0.026 | 1.37 | 11500 | 1.3648 | 0.8337 | | 0.0359 | 1.43 | 12000 | 1.3063 | 0.8337 | | 0.0225 | 1.48 | 12500 | 1.3475 | 0.8360 | | 0.0274 | 1.54 | 13000 | 1.3568 | 0.8337 | | 0.0304 | 1.6 | 13500 | 1.3533 | 0.8372 | | 0.0534 | 1.66 | 14000 | 1.2560 | 0.8417 | | 0.0379 | 1.72 | 14500 | 1.2770 | 0.8417 | | 0.0678 | 1.78 | 15000 | 1.1950 | 0.8429 | | 0.0488 | 1.84 | 15500 | 1.1796 | 0.8440 | | 0.0598 | 1.9 | 16000 | 1.1650 | 0.8452 | | 0.0565 | 1.96 | 16500 | 1.1843 | 0.8429 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0