--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - funsd-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: test results: - task: name: Token Classification type: token-classification dataset: name: funsd-layoutlmv3 type: funsd-layoutlmv3 config: funsd split: test args: funsd metrics: - name: Precision type: precision value: 0.8892100192678227 - name: Recall type: recall value: 0.9170392449080974 - name: F1 type: f1 value: 0.9029102470041576 - name: Accuracy type: accuracy value: 0.8690122429573279 --- # test This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.5352 - Precision: 0.8892 - Recall: 0.9170 - F1: 0.9029 - Accuracy: 0.8690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.33 | 100 | 0.7740 | 0.7470 | 0.8127 | 0.7785 | 0.7037 | | No log | 2.67 | 200 | 0.5483 | 0.8111 | 0.8937 | 0.8504 | 0.7910 | | No log | 4.0 | 300 | 0.4411 | 0.8400 | 0.8813 | 0.8601 | 0.8492 | | No log | 5.33 | 400 | 0.4512 | 0.8432 | 0.8952 | 0.8684 | 0.8499 | | 0.5705 | 6.67 | 500 | 0.4541 | 0.8865 | 0.9195 | 0.9027 | 0.8652 | | 0.5705 | 8.0 | 600 | 0.4939 | 0.8782 | 0.9165 | 0.8969 | 0.8625 | | 0.5705 | 9.33 | 700 | 0.5152 | 0.8792 | 0.9151 | 0.8968 | 0.8572 | | 0.5705 | 10.67 | 800 | 0.5299 | 0.8856 | 0.9116 | 0.8984 | 0.8663 | | 0.5705 | 12.0 | 900 | 0.5162 | 0.8894 | 0.9185 | 0.9037 | 0.8697 | | 0.1324 | 13.33 | 1000 | 0.5352 | 0.8892 | 0.9170 | 0.9029 | 0.8690 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3