--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERT-finetuned-ner-S800 results: [] --- # DistilBERT-finetuned-ner-S800 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0797 - Precision: 0.5276 - Recall: 0.6297 - F1: 0.5742 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 55 | 0.1312 | 0.3091 | 0.3759 | 0.3392 | 0.9464 | | No log | 2.0 | 110 | 0.0918 | 0.4431 | 0.4965 | 0.4683 | 0.9663 | | No log | 3.0 | 165 | 0.0826 | 0.4836 | 0.6199 | 0.5433 | 0.9684 | | No log | 4.0 | 220 | 0.0777 | 0.5189 | 0.6157 | 0.5632 | 0.9703 | | No log | 5.0 | 275 | 0.0797 | 0.5276 | 0.6297 | 0.5742 | 0.9700 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3