File size: 4,827 Bytes
ee7a752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torchaudio
import torch

from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
)

from speechtokenizer import SpeechTokenizer
from audiotools import AudioSignal


def decode_tts(tokens, quantizer, n_codebooks, n_original_tokens, start_audio_token_id, end_audio_token_id):
    # find start and end indices of audio tokens
    start = torch.nonzero(tokens == start_audio_token_id)
    end = torch.nonzero(tokens == end_audio_token_id)

    start = start[0, -1] + 1 if len(start) else 0
    end = end[0, -1] if len(end) else tokens.shape[-1]

    # subtract length of original vocabulary -> tokens in range [0, 1024)
    audio_tokens = tokens[start:end] % n_original_tokens
    reminder = audio_tokens.shape[-1] % n_codebooks

    if reminder:
        # pad if last frame is incomplete
        pad_tokens = torch.zeros(n_codebooks - reminder, device="cuda")
        audio_tokens = torch.cat([audio_tokens, pad_tokens[reminder:n_codebooks]], dim=0)

    transposed = audio_tokens.view(-1, n_codebooks).t()
    codes = transposed.view(n_codebooks, 1, -1).to(device)

    audio = quantizer.decode(codes).squeeze(0)

    del tokens
    del audio_tokens
    torch.cuda.empty_cache()

    return AudioSignal(audio.detach().cpu().numpy(), quantizer.sample_rate)


def infer_text_to_audio(text, model, tokenizer, quantizer, max_seq_length=1024, top_k=20):
    text_tokenized = tokenizer(text, return_tensors="pt")
    text_input_tokens = text_tokenized["input_ids"].to(device)

    soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
    eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)

    text_tokens = torch.cat([text_input_tokens, soa], dim=1)
    attention_mask = torch.ones(text_tokens.size(), device=device)

    output_audio_tokens = model.generate(
        text_tokens,
        attention_mask=attention_mask,
        max_new_tokens=max_seq_length,
        top_k=top_k,
        do_sample=True,
        temperature=0.8,
        no_repeat_ngram_size=3,
    )

    audio_signal = decode_tts(output_audio_tokens[0], quantizer, 3, len(tokenizer) - codebook_size, soa, eoa)

    return audio_signal


def infer_audio_to_text(audio_path, model, tokenizer, quantizer, max_seq_length=1024, top_k=20):
    audio_data, sample_rate = torchaudio.load(audio_path)

    audio = audio_data.view(1, 1, -1).float().to(device)
    # bandwidth_id = torch.tensor([0])

    codes = quantizer.encode(audio)
    raw_audio_tokens = codes[:, :n_codebooks_asr] + len(tokenizer) - codebook_size

    soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
    eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
    audio_tokens = torch.cat([soa, raw_audio_tokens.view(1, -1), eoa], dim=1)
    tokens = torch.cat([audio_tokens], dim=1)

    attention_mask = torch.ones(tokens.size(), device=device)

    output_text_tokens = model.generate(
        tokens,
        attention_mask=attention_mask,
        max_new_tokens=max_seq_length,
        temperature=0.6,
        top_p=0.9,
        top_k=top_k,
        no_repeat_ngram_size=4,
        length_penalty=2.0,
        repetition_penalty=1.5
    )

    output_text_tokens = output_text_tokens.cpu()[0]
    output_text_tokens = output_text_tokens[output_text_tokens < tokenizer(start_audio_token)["input_ids"][-1]]
    decoded_text = tokenizer.decode(output_text_tokens, skip_special_tokens=True)

    return decoded_text


device = "cuda"

n_special_tokens = 3
n_codebooks_tts = 3
n_codebooks_asr = 1

start_audio_token = "<soa>"
end_audio_token = "<eoa>"
end_sequence_token = "<eos>"

base_model = "Vikhrmodels/salt-116k"


if __name__ == "__main__":
    tokenizer = AutoTokenizer.from_pretrained(base_model, cache_dir=".")
    model = AutoModelForCausalLM.from_pretrained(
        base_model,
        cache_dir=".",
        torch_dtype=torch.bfloat16,
        attn_implementation="sdpa",
        device_map={"": 0}
    )

    quantizer_speech = SpeechTokenizer.load_from_checkpoint("speechtokenizer/config.json",
                                                            "speechtokenizer/SpeechTokenizer.pt")
    quantizer_speech = quantizer_speech.eval().to(device)
    codebook_size = quantizer_speech.quantizer.bins

    text = ("Say 'COUNT NUMBERS FROM ONE TO TEN' with a male speaker delivers a very monotone and "
            "low-pitched speech with a moderate speed in a setting with almost no noise, "
            "creating a clear and quiet recording.")

    audio_signal = infer_text_to_audio(text, model, tokenizer, quantizer_speech, top_k=50)
    audio_signal.write("output.wav")

    audio_path = "./input.wav"
    generated_text = infer_audio_to_text(audio_path, model, tokenizer, quantizer_speech)
    print(generated_text)