import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration from typing import Dict, List, Any import torch class EndpointHandler(): def __init__(self, path=""): self.processor = Blip2Processor.from_pretrained("Salesforce/blip-image-captioning-large") self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model.to(self.device) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: image = data.pop("inputs", data) processed = self.processor(images=image, return_tensors="pt").to(self.device) out = self.model.generate(**processed) return self.processor.decode(out[0], skip_special_tokens=True)