Edit model card

bert_emo_classifier

This model is a fine-tuned version of bert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2748

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
0.9063 0.25 500 0.4845
0.3362 0.5 1000 0.3492
0.2759 0.75 1500 0.2819
0.2521 1.0 2000 0.2464
0.1705 1.25 2500 0.2345
0.1841 1.5 3000 0.2013
0.1428 1.75 3500 0.1926
0.1747 2.0 4000 0.1866
0.1082 2.25 4500 0.2302
0.1142 2.5 5000 0.2118
0.1205 2.75 5500 0.2318
0.1135 3.0 6000 0.2306
0.0803 3.25 6500 0.2625
0.0745 3.5 7000 0.2850
0.085 3.75 7500 0.2719
0.0701 4.0 8000 0.2748

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.10.3
Downloads last month
39
Hosted inference API
Text Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Dataset used to train Vasanth/bert_emo_classifier