--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bertNer-biobert results: [] --- # bertNer-biobert This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1284 - Precision: 0.9471 - Recall: 0.9630 - F1: 0.9550 - Accuracy: 0.9758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1851 | 1.0 | 1224 | 0.1186 | 0.9202 | 0.9550 | 0.9373 | 0.9670 | | 0.1188 | 2.0 | 2448 | 0.1061 | 0.9349 | 0.9684 | 0.9514 | 0.9737 | | 0.0789 | 3.0 | 3672 | 0.1051 | 0.9381 | 0.9710 | 0.9543 | 0.9755 | | 0.0569 | 4.0 | 4896 | 0.1062 | 0.9403 | 0.9712 | 0.9555 | 0.9761 | | 0.0492 | 5.0 | 6120 | 0.1174 | 0.9403 | 0.9646 | 0.9523 | 0.9734 | | 0.0405 | 6.0 | 7344 | 0.1220 | 0.9426 | 0.9638 | 0.9531 | 0.9739 | | 0.0355 | 7.0 | 8568 | 0.1175 | 0.9446 | 0.9651 | 0.9548 | 0.9756 | | 0.0296 | 8.0 | 9792 | 0.1239 | 0.9446 | 0.9660 | 0.9552 | 0.9757 | | 0.0224 | 9.0 | 11016 | 0.1247 | 0.9474 | 0.9640 | 0.9556 | 0.9760 | | 0.0219 | 10.0 | 12240 | 0.1284 | 0.9471 | 0.9630 | 0.9550 | 0.9758 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0