Vanheart commited on
Commit
1c39fbb
1 Parent(s): 22cb3fc

Upload First LunarLander trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.49 +/- 18.85
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a8a4ca972e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a8a4ca97370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a8a4ca97400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a8a4ca97490>", "_build": "<function ActorCriticPolicy._build at 0x7a8a4ca97520>", "forward": "<function ActorCriticPolicy.forward at 0x7a8a4ca975b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a8a4ca97640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a8a4ca976d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a8a4ca97760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a8a4ca977f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a8a4ca97880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a8a4ca97910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a8a4ca3e5c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703047132138599763, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACY3/T3ExGo+NpY3vhbrgL68aI88G2eVvAAAAAAAAAAAM2ezOym8GLoy37g7heOfOQXk8zp9O1i6AACAPwAAgD8AnPe8j0ZaurcIjbqQBo+2n5Z5OnPipTkAAIA/AACAPzPnXj2u8YK6VmEetYk9oq8qxoY6XVtaNAAAgD8AAIA/Gn85vaS/frvm//G6TTIzPU35X7xoL7k2AACAPwAAgD+zQpQ9RasAP6MbL77+N4m+KTvGvecvBr4AAAAAAAAAABZDaL5hGoY/XqCbvn+W0r7AeK6+OGtxPQAAAAAAAAAAzWzJvOK2jj6Ylpm9bYxhvsHVn7y6/0O7AAAAAAAAAABNYni+D9heP0ApUb0xArS+P+mWvpfmFz4AAAAAAAAAADNHML3WeSQ9RT5OvVvPSL5gX3u9Xud+vQAAAAAAAAAA2tEYPoCbSz/02we+RXOOvvmrIDxrGgE9AAAAAAAAAADmBkk+tjmMP6J9IT4Euny+10NHPg0fTL0AAAAAAAAAAE0qXT1ikhk+dE4Mvf7HRL5KcyU986lyvQAAAAAAAAAADX/SPbi/1j2VZWy95XhxvqxhkjzDUta8AAAAAAAAAAAABeO8SMuaug6bL7RyvUuvVd3GOZG+lTMAAIA/AACAP2a9s7wUdKK6lp9EM2f3dq7Sj6u66vHFswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAf3meUY9CMAWyUTT4BjAF0lEdAk++0/W1+iXV9lChoBkdAccMpXZGrj2gHTTUBaAhHQJPxRszl90B1fZQoaAZHQGy/sA/9pAVoB00IAWgIR0CT8Xt+CsfadX2UKGgGR0BxkO3Zwn6VaAdNgwFoCEdAk/IFyimEXnV9lChoBkdAcIXVI7Njb2gHTT0BaAhHQJPy5nQID5l1fZQoaAZHQHLwYjB2wFFoB003AWgIR0CT88O/L1VYdX2UKGgGR0BukaYoiLVGaAdNTQFoCEdAk/VYNmUW23V9lChoBkdASNMNQTEiuGgHS/BoCEdAk/Yam8/Uv3V9lChoBkdAbxlHBDXvpmgHTSoBaAhHQJP3A189fTl1fZQoaAZHQHFgaSX+l0poB01dAWgIR0CT93SVW0Z4dX2UKGgGR0Bt9xgE2YOUaAdNNAFoCEdAk/eO45Lh73V9lChoBkdAcRW80DU3GWgHTW0BaAhHQJP6DIyTINp1fZQoaAZHQG09LY5DJEJoB00cAWgIR0CT+udJ8OTadX2UKGgGR0BtJgzzmOlwaAdNVAFoCEdAk/uYuoP07XV9lChoBkdAcVjL0z0pVmgHTQsBaAhHQJP8hc2R7qp1fZQoaAZHQHJ4GeDnNgVoB00BAWgIR0CT/fosI3R5dX2UKGgGR0BxaqMglnh9aAdNQgFoCEdAk/83A/LTyHV9lChoBkdAc1+hfjS5RWgHTRYBaAhHQJP/iScLBsR1fZQoaAZHQG3EFzdUKiRoB01lAWgIR0CUAL8zQ/ordX2UKGgGR0BuBHrD63y7aAdNTgFoCEdAlAIiyMUAUHV9lChoBkdATQzDfm9xqGgHTRcBaAhHQJQDFt3wCr91fZQoaAZHQHBJveDWbw1oB01LAWgIR0CUA2mig00ndX2UKGgGR0Bvy7PQfIS2aAdNXAFoCEdAlANZXhfjTHV9lChoBkdAcsBHc1wYL2gHTUABaAhHQJQECieumrN1fZQoaAZHQHAEkvf0mMRoB00fAWgIR0CUBFDrqt5ldX2UKGgGR0ByPmaa1Cw9aAdNSgFoCEdAlAVehbnoxHV9lChoBkdAQ4Yzch1TzmgHS/BoCEdAlAWcQmNR33V9lChoBkdAbw30A93bEmgHTUgBaAhHQJQFo+5e7cx1fZQoaAZHQFLX8lHBk7RoB0vfaAhHQJQGpRWLgoB1fZQoaAZHQHBHXG8274BoB00vAWgIR0CUBqW/JvHcdX2UKGgGR0BuBDdtVJcxaAdNIgFoCEdAlAbKKP4mC3V9lChoBkdAPpSpvP1L8WgHTQkBaAhHQJQIxQfp2U11fZQoaAZHQHEqW6kIomZoB01YAWgIR0CUCbtPYWcjdX2UKGgGR0Bw8HEIgNgCaAdNQAFoCEdAlAqVMh5gPXV9lChoBkdAVnMfhddE9mgHS9VoCEdAlAthEa2nbnV9lChoBkdAb0Dk8zQ/o2gHTT0BaAhHQJQL0r8R+Sd1fZQoaAZHQHHXRQzk6tFoB00MAWgIR0CUDK4593KTdX2UKGgGR0BPSaDPGACoaAdL2GgIR0CUDQ5ULlV+dX2UKGgGR0BwQbBZZB9kaAdNGAFoCEdAlA02dAgPmXV9lChoBkdAbYUNlRP422gHTVkBaAhHQJQOW9du5z51fZQoaAZHQHFb4axX4j9oB00YAWgIR0CUD8sKLKmsdX2UKGgGR0BwbbkGRmseaAdNZgFoCEdAlA/oqTbFj3V9lChoBkdAbIuaScLBsWgHTU0BaAhHQJQQTfKp1ih1fZQoaAZHQG/x46fapP1oB00nAWgIR0CUEFZQpF1CdX2UKGgGR0BE9onKGL1maAdNBgFoCEdAlBBas2eg+XV9lChoBkdAcVqVinYQKGgHTSUBaAhHQJQRG2lVLjB1fZQoaAZHQHD95iAlOXVoB01GAWgIR0CUEiJGvwEydX2UKGgGR0Bv7FOdoWYXaAdNCAFoCEdAlBQVdX1an3V9lChoBkdAbXxXf642CWgHTTwBaAhHQJQqFnqVyFR1fZQoaAZHQHGP2nXNC7doB00aAWgIR0CUKpuE25xzdX2UKGgGR0Bya40O3DvWaAdNMgFoCEdAlC37fLs8gnV9lChoBkdAcCMNB4Uvf2gHTUwBaAhHQJQuMLSeAd51fZQoaAZHQGzO3x4IKMNoB00dAWgIR0CUL1B1LamGdX2UKGgGR0BwbQJswco6aAdNUAFoCEdAlDBgKa5PM3V9lChoBkdAcQCZPEbYLGgHTQEBaAhHQJQwe0/nnuB1fZQoaAZHQHGFKL876pJoB00IAWgIR0CUMOAH3UQTdX2UKGgGR0Bwj0tI065oaAdNbQFoCEdAlDGiOFQEZHV9lChoBkdAcG2/EfkmyGgHTSsBaAhHQJQx/WMCLdh1fZQoaAZHQHBi+MQ2/BZoB00/AWgIR0CUMsPnSv1UdX2UKGgGR0BDRYpMHryEaAdL9GgIR0CUMtf0VafSdX2UKGgGR0BxhBqesgdPaAdNJgFoCEdAlDOLrHEMs3V9lChoBkdAc0Qq33Hq/2gHTVUBaAhHQJQ0ZEUj9n91fZQoaAZHQHBKU3GXHBFoB00pAWgIR0CUNpNyo4uLdX2UKGgGR0AhVx4IKMNuaAdL82gIR0CUOD80UGmldX2UKGgGR0Bx4NBgNPP+aAdNNwFoCEdAlDiN/SYw7HV9lChoBkdAcTeug6EJ0GgHTW8BaAhHQJQ6bcFhXsB1fZQoaAZHQE+/9If8uSRoB0voaAhHQJQ6cYUFjd51fZQoaAZHQHBay8WbgCRoB00/AWgIR0CUOzVG0/nodX2UKGgGR0BwU22hIvrXaAdNHAFoCEdAlDuOhsZYP3V9lChoBkdAcFty8SPEKmgHTRgBaAhHQJQ7x71Iy0t1fZQoaAZHQG7+9sabWmRoB01HAWgIR0CUPGX7Lt/ndX2UKGgGR0BxnQvEjxCqaAdNGQFoCEdAlDyhhYvFnHV9lChoBkdAcWkGtITXa2gHTRsBaAhHQJQ9UTh5xBF1fZQoaAZHQHBWNW6shgVoB01OAWgIR0CUPWkmhM8HdX2UKGgGR0BxmUyxiXpoaAdNLgFoCEdAlD8wr+YMOXV9lChoBkdAcmMigCfYjGgHTVgBaAhHQJRAAre67NB1fZQoaAZHQHAhzUVi4KBoB02GAWgIR0CUQRsY2sJZdX2UKGgGR0BPAnbItDlYaAdL72gIR0CUQTEMb3oLdX2UKGgGR0BwAQp5NXYEaAdNJwFoCEdAlEGNP557gXV9lChoBkdAcXqa2WpqAWgHTZsDaAhHQJRCGeiBXjl1fZQoaAZHQHFtrBO58ShoB00YAWgIR0CUQrzd1uBMdX2UKGgGR0Bu/P6TGHYZaAdNHgFoCEdAlESlIAfdRHV9lChoBkdAcNZht+CsfmgHTScBaAhHQJRFzVx0dR11fZQoaAZHQHEmWwA2hqVoB00gAWgIR0CURhtSQ5mzdX2UKGgGR0BsFRdpqREGaAdNGgFoCEdAlEbExM36ynV9lChoBkdAcJbdFvybx2gHTVwBaAhHQJRHKOxSpBJ1fZQoaAZHQG0vKLS/j81oB00gAWgIR0CUR8YD1XeWdX2UKGgGR0Bw0e1PWQOnaAdNQwFoCEdAlEgPECNjsnV9lChoBkdAb7d2VVxS52gHTVwBaAhHQJRIHWYnfEZ1fZQoaAZHQHF92v8qFytoB00sAWgIR0CUSDqh11W9dX2UKGgGRz/6PFaSs8xLaAdL/WgIR0CUSiiBGx2TdX2UKGgGR0A1TVH4GlhxaAdL6mgIR0CUSoEw35vcdX2UKGgGR0Bwva4/eLvUaAdNJwFoCEdAlEqTRQaaTnV9lChoBkdAcNkk/bCaZ2gHTVUBaAhHQJRLVQtSQ5p1fZQoaAZHQG9L1S4vvjRoB000AWgIR0CUS9Fpfx+bdX2UKGgGR0By8K6BiCrcaAdNRwFoCEdAlEy6U3XI2nV9lChoBkdAcHi+ERJ2+2gHTUEBaAhHQJRNuNMoMKF1fZQoaAZHQEeS2S+xnnNoB0v4aAhHQJRPO/vfCQ91fZQoaAZHQFGnrl/6O5toB0vraAhHQJRPYMVk+X91fZQoaAZHQHJHmN70Fr5oB01HAWgIR0CUT9oJzDGcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-1mstep.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94efecd1e2a9d889ed699e4425b43df5fc6bc368181d47937c80559c2c7a3c5a
3
+ size 148052
ppo-LunarLander-v2-1mstep/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-1mstep/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a8a4ca972e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a8a4ca97370>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a8a4ca97400>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a8a4ca97490>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a8a4ca97520>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a8a4ca975b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a8a4ca97640>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a8a4ca976d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a8a4ca97760>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a8a4ca977f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a8a4ca97880>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a8a4ca97910>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a8a4ca3e5c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1703047132138599763,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACY3/T3ExGo+NpY3vhbrgL68aI88G2eVvAAAAAAAAAAAM2ezOym8GLoy37g7heOfOQXk8zp9O1i6AACAPwAAgD8AnPe8j0ZaurcIjbqQBo+2n5Z5OnPipTkAAIA/AACAPzPnXj2u8YK6VmEetYk9oq8qxoY6XVtaNAAAgD8AAIA/Gn85vaS/frvm//G6TTIzPU35X7xoL7k2AACAPwAAgD+zQpQ9RasAP6MbL77+N4m+KTvGvecvBr4AAAAAAAAAABZDaL5hGoY/XqCbvn+W0r7AeK6+OGtxPQAAAAAAAAAAzWzJvOK2jj6Ylpm9bYxhvsHVn7y6/0O7AAAAAAAAAABNYni+D9heP0ApUb0xArS+P+mWvpfmFz4AAAAAAAAAADNHML3WeSQ9RT5OvVvPSL5gX3u9Xud+vQAAAAAAAAAA2tEYPoCbSz/02we+RXOOvvmrIDxrGgE9AAAAAAAAAADmBkk+tjmMP6J9IT4Euny+10NHPg0fTL0AAAAAAAAAAE0qXT1ikhk+dE4Mvf7HRL5KcyU986lyvQAAAAAAAAAADX/SPbi/1j2VZWy95XhxvqxhkjzDUta8AAAAAAAAAAAABeO8SMuaug6bL7RyvUuvVd3GOZG+lTMAAIA/AACAP2a9s7wUdKK6lp9EM2f3dq7Sj6u66vHFswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAf3meUY9CMAWyUTT4BjAF0lEdAk++0/W1+iXV9lChoBkdAccMpXZGrj2gHTTUBaAhHQJPxRszl90B1fZQoaAZHQGy/sA/9pAVoB00IAWgIR0CT8Xt+CsfadX2UKGgGR0BxkO3Zwn6VaAdNgwFoCEdAk/IFyimEXnV9lChoBkdAcIXVI7Njb2gHTT0BaAhHQJPy5nQID5l1fZQoaAZHQHLwYjB2wFFoB003AWgIR0CT88O/L1VYdX2UKGgGR0BukaYoiLVGaAdNTQFoCEdAk/VYNmUW23V9lChoBkdASNMNQTEiuGgHS/BoCEdAk/Yam8/Uv3V9lChoBkdAbxlHBDXvpmgHTSoBaAhHQJP3A189fTl1fZQoaAZHQHFgaSX+l0poB01dAWgIR0CT93SVW0Z4dX2UKGgGR0Bt9xgE2YOUaAdNNAFoCEdAk/eO45Lh73V9lChoBkdAcRW80DU3GWgHTW0BaAhHQJP6DIyTINp1fZQoaAZHQG09LY5DJEJoB00cAWgIR0CT+udJ8OTadX2UKGgGR0BtJgzzmOlwaAdNVAFoCEdAk/uYuoP07XV9lChoBkdAcVjL0z0pVmgHTQsBaAhHQJP8hc2R7qp1fZQoaAZHQHJ4GeDnNgVoB00BAWgIR0CT/fosI3R5dX2UKGgGR0BxaqMglnh9aAdNQgFoCEdAk/83A/LTyHV9lChoBkdAc1+hfjS5RWgHTRYBaAhHQJP/iScLBsR1fZQoaAZHQG3EFzdUKiRoB01lAWgIR0CUAL8zQ/ordX2UKGgGR0BuBHrD63y7aAdNTgFoCEdAlAIiyMUAUHV9lChoBkdATQzDfm9xqGgHTRcBaAhHQJQDFt3wCr91fZQoaAZHQHBJveDWbw1oB01LAWgIR0CUA2mig00ndX2UKGgGR0Bvy7PQfIS2aAdNXAFoCEdAlANZXhfjTHV9lChoBkdAcsBHc1wYL2gHTUABaAhHQJQECieumrN1fZQoaAZHQHAEkvf0mMRoB00fAWgIR0CUBFDrqt5ldX2UKGgGR0ByPmaa1Cw9aAdNSgFoCEdAlAVehbnoxHV9lChoBkdAQ4Yzch1TzmgHS/BoCEdAlAWcQmNR33V9lChoBkdAbw30A93bEmgHTUgBaAhHQJQFo+5e7cx1fZQoaAZHQFLX8lHBk7RoB0vfaAhHQJQGpRWLgoB1fZQoaAZHQHBHXG8274BoB00vAWgIR0CUBqW/JvHcdX2UKGgGR0BuBDdtVJcxaAdNIgFoCEdAlAbKKP4mC3V9lChoBkdAPpSpvP1L8WgHTQkBaAhHQJQIxQfp2U11fZQoaAZHQHEqW6kIomZoB01YAWgIR0CUCbtPYWcjdX2UKGgGR0Bw8HEIgNgCaAdNQAFoCEdAlAqVMh5gPXV9lChoBkdAVnMfhddE9mgHS9VoCEdAlAthEa2nbnV9lChoBkdAb0Dk8zQ/o2gHTT0BaAhHQJQL0r8R+Sd1fZQoaAZHQHHXRQzk6tFoB00MAWgIR0CUDK4593KTdX2UKGgGR0BPSaDPGACoaAdL2GgIR0CUDQ5ULlV+dX2UKGgGR0BwQbBZZB9kaAdNGAFoCEdAlA02dAgPmXV9lChoBkdAbYUNlRP422gHTVkBaAhHQJQOW9du5z51fZQoaAZHQHFb4axX4j9oB00YAWgIR0CUD8sKLKmsdX2UKGgGR0BwbbkGRmseaAdNZgFoCEdAlA/oqTbFj3V9lChoBkdAbIuaScLBsWgHTU0BaAhHQJQQTfKp1ih1fZQoaAZHQG/x46fapP1oB00nAWgIR0CUEFZQpF1CdX2UKGgGR0BE9onKGL1maAdNBgFoCEdAlBBas2eg+XV9lChoBkdAcVqVinYQKGgHTSUBaAhHQJQRG2lVLjB1fZQoaAZHQHD95iAlOXVoB01GAWgIR0CUEiJGvwEydX2UKGgGR0Bv7FOdoWYXaAdNCAFoCEdAlBQVdX1an3V9lChoBkdAbXxXf642CWgHTTwBaAhHQJQqFnqVyFR1fZQoaAZHQHGP2nXNC7doB00aAWgIR0CUKpuE25xzdX2UKGgGR0Bya40O3DvWaAdNMgFoCEdAlC37fLs8gnV9lChoBkdAcCMNB4Uvf2gHTUwBaAhHQJQuMLSeAd51fZQoaAZHQGzO3x4IKMNoB00dAWgIR0CUL1B1LamGdX2UKGgGR0BwbQJswco6aAdNUAFoCEdAlDBgKa5PM3V9lChoBkdAcQCZPEbYLGgHTQEBaAhHQJQwe0/nnuB1fZQoaAZHQHGFKL876pJoB00IAWgIR0CUMOAH3UQTdX2UKGgGR0Bwj0tI065oaAdNbQFoCEdAlDGiOFQEZHV9lChoBkdAcG2/EfkmyGgHTSsBaAhHQJQx/WMCLdh1fZQoaAZHQHBi+MQ2/BZoB00/AWgIR0CUMsPnSv1UdX2UKGgGR0BDRYpMHryEaAdL9GgIR0CUMtf0VafSdX2UKGgGR0BxhBqesgdPaAdNJgFoCEdAlDOLrHEMs3V9lChoBkdAc0Qq33Hq/2gHTVUBaAhHQJQ0ZEUj9n91fZQoaAZHQHBKU3GXHBFoB00pAWgIR0CUNpNyo4uLdX2UKGgGR0AhVx4IKMNuaAdL82gIR0CUOD80UGmldX2UKGgGR0Bx4NBgNPP+aAdNNwFoCEdAlDiN/SYw7HV9lChoBkdAcTeug6EJ0GgHTW8BaAhHQJQ6bcFhXsB1fZQoaAZHQE+/9If8uSRoB0voaAhHQJQ6cYUFjd51fZQoaAZHQHBay8WbgCRoB00/AWgIR0CUOzVG0/nodX2UKGgGR0BwU22hIvrXaAdNHAFoCEdAlDuOhsZYP3V9lChoBkdAcFty8SPEKmgHTRgBaAhHQJQ7x71Iy0t1fZQoaAZHQG7+9sabWmRoB01HAWgIR0CUPGX7Lt/ndX2UKGgGR0BxnQvEjxCqaAdNGQFoCEdAlDyhhYvFnHV9lChoBkdAcWkGtITXa2gHTRsBaAhHQJQ9UTh5xBF1fZQoaAZHQHBWNW6shgVoB01OAWgIR0CUPWkmhM8HdX2UKGgGR0BxmUyxiXpoaAdNLgFoCEdAlD8wr+YMOXV9lChoBkdAcmMigCfYjGgHTVgBaAhHQJRAAre67NB1fZQoaAZHQHAhzUVi4KBoB02GAWgIR0CUQRsY2sJZdX2UKGgGR0BPAnbItDlYaAdL72gIR0CUQTEMb3oLdX2UKGgGR0BwAQp5NXYEaAdNJwFoCEdAlEGNP557gXV9lChoBkdAcXqa2WpqAWgHTZsDaAhHQJRCGeiBXjl1fZQoaAZHQHFtrBO58ShoB00YAWgIR0CUQrzd1uBMdX2UKGgGR0Bu/P6TGHYZaAdNHgFoCEdAlESlIAfdRHV9lChoBkdAcNZht+CsfmgHTScBaAhHQJRFzVx0dR11fZQoaAZHQHEmWwA2hqVoB00gAWgIR0CURhtSQ5mzdX2UKGgGR0BsFRdpqREGaAdNGgFoCEdAlEbExM36ynV9lChoBkdAcJbdFvybx2gHTVwBaAhHQJRHKOxSpBJ1fZQoaAZHQG0vKLS/j81oB00gAWgIR0CUR8YD1XeWdX2UKGgGR0Bw0e1PWQOnaAdNQwFoCEdAlEgPECNjsnV9lChoBkdAb7d2VVxS52gHTVwBaAhHQJRIHWYnfEZ1fZQoaAZHQHF92v8qFytoB00sAWgIR0CUSDqh11W9dX2UKGgGRz/6PFaSs8xLaAdL/WgIR0CUSiiBGx2TdX2UKGgGR0A1TVH4GlhxaAdL6mgIR0CUSoEw35vcdX2UKGgGR0Bwva4/eLvUaAdNJwFoCEdAlEqTRQaaTnV9lChoBkdAcNkk/bCaZ2gHTVUBaAhHQJRLVQtSQ5p1fZQoaAZHQG9L1S4vvjRoB000AWgIR0CUS9Fpfx+bdX2UKGgGR0By8K6BiCrcaAdNRwFoCEdAlEy6U3XI2nV9lChoBkdAcHi+ERJ2+2gHTUEBaAhHQJRNuNMoMKF1fZQoaAZHQEeS2S+xnnNoB0v4aAhHQJRPO/vfCQ91fZQoaAZHQFGnrl/6O5toB0vraAhHQJRPYMVk+X91fZQoaAZHQHJHmN70Fr5oB01HAWgIR0CUT9oJzDGcdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-1mstep/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a4bff379c5bc9d062cca8a5f01e5157626389ccc33650b96477d9330daaa0e8
3
+ size 88362
ppo-LunarLander-v2-1mstep/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbec5b037770754ac27cc798ce4c84fa16d43f14ff9024042eade9b5b705c2f1
3
+ size 43762
ppo-LunarLander-v2-1mstep/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2-1mstep/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (188 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.48871293465186, "std_reward": 18.845097415204354, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-20T05:03:51.622527"}