--- language: - vi license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base_baseline_syllables results: [] --- # xlm-roberta-base_baseline_syllables This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the covid19_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0807 - Patient Id: 0.9855 - Name: 0.9337 - Gender: 0.9714 - Age: 0.9834 - Job: 0.8092 - Location: 0.9596 - Organization: 0.8897 - Date: 0.9860 - Symptom And Disease: 0.8885 - Transportation: 1.0 - F1 Macro: 0.9407 - F1 Micro: 0.9541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Patient Id | Name | Gender | Age | Job | Location | Organization | Date | Symptom And Disease | Transportation | F1 Macro | F1 Micro | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:------:|:------:|:------:|:--------:|:------------:|:------:|:-------------------:|:--------------:|:--------:|:--------:| | 0.216 | 1.0 | 629 | 0.0912 | 0.9477 | 0.9143 | 0.8367 | 0.9237 | 0.6228 | 0.9426 | 0.8234 | 0.9811 | 0.8603 | 0.9827 | 0.8835 | 0.9202 | | 0.0478 | 2.0 | 1258 | 0.0832 | 0.9860 | 0.8942 | 0.9414 | 0.9741 | 0.5368 | 0.9434 | 0.8584 | 0.9811 | 0.8722 | 0.9829 | 0.8970 | 0.9369 | | 0.0306 | 3.0 | 1887 | 0.0744 | 0.9867 | 0.9206 | 0.9494 | 0.9780 | 0.7664 | 0.9550 | 0.8913 | 0.9860 | 0.8791 | 0.9829 | 0.9295 | 0.9492 | | 0.0211 | 4.0 | 2516 | 0.0789 | 0.9863 | 0.9309 | 0.9661 | 0.9793 | 0.7795 | 0.9549 | 0.8859 | 0.9860 | 0.8844 | 1.0 | 0.9353 | 0.9508 | | 0.0153 | 5.0 | 3145 | 0.0807 | 0.9855 | 0.9337 | 0.9714 | 0.9834 | 0.8092 | 0.9596 | 0.8897 | 0.9860 | 0.8885 | 1.0 | 0.9407 | 0.9541 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1