from datasets import load_dataset, load_from_disk, Dataset import os from transformers import AutoTokenizer, AutoModel import torch import pandas as pd datasetPath = "dataset/github.ds" if os.path.exists(datasetPath): issues_dataset = load_from_disk(datasetPath) else: issues_dataset = load_dataset("lewtun/github-issues", split="train") issues_dataset.save_to_disk(datasetPath) issues_dataset = issues_dataset.filter( lambda x: (x["is_pull_request"] == False and len(x["comments"]) > 0) ) columns = issues_dataset.column_names columns_to_keep = ["title", "body", "html_url", "comments"] columns_to_remove = set(columns_to_keep).symmetric_difference(columns) issues_dataset = issues_dataset.remove_columns(columns_to_remove) issues_dataset.set_format("pandas") df = issues_dataset[:] comments_df = df.explode("comments", ignore_index=True) comments_dataset = Dataset.from_pandas(comments_df) comments_dataset = comments_dataset.map( lambda x: {"comment_length": len(x["comments"].split())} ) comments_dataset = comments_dataset.filter(lambda x: x["comment_length"] > 15) def concatenate_text(examples): return { "text": examples["title"] + " \n " + examples["body"] + " \n " + examples["comments"] } comments_dataset = comments_dataset.map(concatenate_text) ######################## model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1" tokenizer = AutoTokenizer.from_pretrained(model_ckpt) model = AutoModel.from_pretrained(model_ckpt) device = torch.device("cuda") model.to(device) def cls_pooling(model_output): return model_output.last_hidden_state[:, 0] def get_embeddings(text_list): encoded_input = tokenizer( text_list, padding=True, truncation=True, return_tensors="pt" ) encoded_input = {k: v.to(device) for k, v in encoded_input.items()} model_output = model(**encoded_input) return cls_pooling(model_output) embedding = get_embeddings(comments_dataset["text"][0]) embeddings_dataset = comments_dataset.map( lambda x: {"embeddings": get_embeddings(x["text"]).detach().cpu().numpy()[0]} ) embeddings_dataset.add_faiss_index(column="embeddings") # embeddings_dataset.save_to_disk("dataset/embeddings") question = "How can I load a dataset offline?" question_embedding = get_embeddings([question]).cpu().detach().numpy() scores, samples = embeddings_dataset.get_nearest_examples( "embeddings", question_embedding, k=5 ) samples_df = pd.DataFrame.from_dict(samples) samples_df["scores"] = scores samples_df.sort_values("scores", ascending=False, inplace=True) for _, row in samples_df.iterrows(): print(f"COMMENT: {row.comments}") print(f"SCORE: {row.scores}") print(f"TITLE: {row.title}") print(f"URL: {row.html_url}") print("=" * 50) print() print(issues_dataset)