##################
# Stable Diffusion Dynamic Thresholding (CFG Scale Fix)
#
# Author: Alex 'mcmonkey' Goodwin
# GitHub URL: https://github.com/mcmonkeyprojects/sd-dynamic-thresholding
# Created: 2022/01/26
# Last updated: 2023/01/30
#
# For usage help, view the README.md file in the extension root, or via the GitHub page.
#
##################
import gradio as gr
import torch, traceback
import dynthres_core
from modules import scripts, script_callbacks, sd_samplers, sd_samplers_compvis, sd_samplers_kdiffusion, sd_samplers_common
try:
import dynthres_unipc
except Exception as e:
print(f"\n\n======\nError! UniPC sampler support failed to load! Is your WebUI up to date?\n(Error: {e})\n======")
######################### Data values #########################
VALID_MODES = ["Constant", "Linear Down", "Cosine Down", "Half Cosine Down", "Linear Up", "Cosine Up", "Half Cosine Up", "Power Up", "Power Down"]
######################### Script class entrypoint #########################
class Script(scripts.Script):
def title(self):
return "Dynamic Thresholding (CFG Scale Fix)"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
enabled = gr.Checkbox(value=False, label="Enable Dynamic Thresholding (CFG Scale Fix)")
# "Dynamic Thresholding (CFG Scale Fix)"
accordion = gr.Group(visible=False)
with accordion:
gr.HTML(value=f"
View the wiki for usage tips.
")
mimic_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='Mimic CFG Scale', value=7.0)
with gr.Accordion("Dynamic Thresholding Advanced Options", open=False):
threshold_percentile = gr.Slider(minimum=90.0, value=100.0, maximum=100.0, step=0.05, label='Top percentile of latents to clamp')
mimic_mode = gr.Dropdown(VALID_MODES, value="Constant", label="Mimic Scale Scheduler")
mimic_scale_min = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, label="Minimum value of the Mimic Scale Scheduler")
cfg_mode = gr.Dropdown(VALID_MODES, value="Constant", label="CFG Scale Scheduler")
cfg_scale_min = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, label="Minimum value of the CFG Scale Scheduler")
power_val = gr.Slider(minimum=0.0, maximum=15.0, step=0.5, value=4.0, visible=False, label="Power Scheduler Value")
def shouldShowPowerScheduler(cfgMode, mimicMode):
if cfgMode in ["Power Up", "Power Down"] or mimicMode in ["Power Up", "Power Down"]:
return {"visible": True, "__type__": "update"}
return {"visible": False, "__type__": "update"}
cfg_mode.change(shouldShowPowerScheduler, inputs=[cfg_mode, mimic_mode], outputs=power_val)
mimic_mode.change(shouldShowPowerScheduler, inputs=[cfg_mode, mimic_mode], outputs=power_val)
enabled.change(
fn=lambda x: {"visible": x, "__type__": "update"},
inputs=[enabled],
outputs=[accordion],
show_progress = False)
self.infotext_fields = (
(enabled, lambda d: gr.Checkbox.update(value="Dynamic thresholding enabled" in d)),
(accordion, lambda d: gr.Accordion.update(visible="Dynamic thresholding enabled" in d)),
(mimic_scale, "Mimic scale"),
(threshold_percentile, "Threshold percentile"),
(mimic_scale_min, "Mimic scale minimum"),
(mimic_mode, lambda d: gr.Dropdown.update(value=d.get("Mimic mode", "Constant"))),
(cfg_mode, lambda d: gr.Dropdown.update(value=d.get("CFG mode", "Constant"))),
(cfg_scale_min, "CFG scale minimum"),
(power_val, "Power scheduler value"))
return [enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, power_val]
last_id = 0
def process_batch(self, p, enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, powerscale_power, batch_number, prompts, seeds, subseeds):
enabled = getattr(p, 'dynthres_enabled', enabled)
if not enabled:
return
orig_sampler_name = p.sampler_name
if orig_sampler_name in ["DDIM", "PLMS"]:
raise RuntimeError(f"Cannot use sampler {orig_sampler_name} with Dynamic Thresholding")
if orig_sampler_name == 'UniPC' and p.enable_hr:
raise RuntimeError(f"UniPC does not support Hires Fix. Auto WebUI silently swaps to DDIM for this, which DynThresh does not support. Please swap to a sampler capable of img2img processing for HR Fix to work.")
mimic_scale = getattr(p, 'dynthres_mimic_scale', mimic_scale)
threshold_percentile = getattr(p, 'dynthres_threshold_percentile', threshold_percentile)
mimic_mode = getattr(p, 'dynthres_mimic_mode', mimic_mode)
mimic_scale_min = getattr(p, 'dynthres_mimic_scale_min', mimic_scale_min)
cfg_mode = getattr(p, 'dynthres_cfg_mode', cfg_mode)
cfg_scale_min = getattr(p, 'dynthres_cfg_scale_min', cfg_scale_min)
experiment_mode = getattr(p, 'dynthres_experiment_mode', 0)
power_val = getattr(p, 'dynthres_power_val', powerscale_power)
p.extra_generation_params["Dynamic thresholding enabled"] = True
p.extra_generation_params["Mimic scale"] = mimic_scale
p.extra_generation_params["Threshold percentile"] = threshold_percentile
p.extra_generation_params["Sampler"] = orig_sampler_name
if mimic_mode != "Constant":
p.extra_generation_params["Mimic mode"] = mimic_mode
p.extra_generation_params["Mimic scale minimum"] = mimic_scale_min
if cfg_mode != "Constant":
p.extra_generation_params["CFG mode"] = cfg_mode
p.extra_generation_params["CFG scale minimum"] = cfg_scale_min
if cfg_mode in ["Power Up", "Power Down"] or mimic_mode in ["Power Up", "Power Down"]:
p.extra_generation_params["Power scheduler value"] = power_val
# Note: the ID number is to protect the edge case of multiple simultaneous runs with different settings
Script.last_id += 1
fixed_sampler_name = f"{orig_sampler_name}_dynthres{Script.last_id}"
# Percentage to portion
threshold_percentile *= 0.01
# Make a placeholder sampler
sampler = sd_samplers.all_samplers_map[orig_sampler_name]
dtData = dynthres_core.DynThresh(mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, power_val, experiment_mode, p.steps)
if orig_sampler_name == "UniPC":
def uniPCConstructor(model):
return CustomVanillaSDSampler(dynthres_unipc.CustomUniPCSampler, model, dtData)
newSampler = sd_samplers_common.SamplerData(fixed_sampler_name, uniPCConstructor, sampler.aliases, sampler.options)
else:
def newConstructor(model):
result = sampler.constructor(model)
cfg = CustomCFGDenoiser(result.model_wrap_cfg.inner_model, dtData)
result.model_wrap_cfg = cfg
return result
newSampler = sd_samplers_common.SamplerData(fixed_sampler_name, newConstructor, sampler.aliases, sampler.options)
# Apply for usage
p.orig_sampler_name = orig_sampler_name
p.sampler_name = fixed_sampler_name
p.fixed_sampler_name = fixed_sampler_name
sd_samplers.all_samplers_map[fixed_sampler_name] = newSampler
if p.sampler is not None:
p.sampler = sd_samplers.create_sampler(fixed_sampler_name, p.sd_model)
def postprocess_batch(self, p, enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, powerscale_power, batch_number, images):
if not enabled or not hasattr(p, 'orig_sampler_name'):
return
p.sampler_name = p.orig_sampler_name
del sd_samplers.all_samplers_map[p.fixed_sampler_name]
del p.orig_sampler_name
del p.fixed_sampler_name
######################### CompVis Implementation logic #########################
class CustomVanillaSDSampler(sd_samplers_compvis.VanillaStableDiffusionSampler):
def __init__(self, constructor, sd_model, dtData):
super().__init__(constructor, sd_model)
self.sampler.main_class = dtData
######################### K-Diffusion Implementation logic #########################
class CustomCFGDenoiser(sd_samplers_kdiffusion.CFGDenoiser):
def __init__(self, model, dtData):
super().__init__(model)
self.main_class = dtData
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:]
# conds_list shape is (batch, cond, 2)
weights = torch.tensor(conds_list, device=uncond.device).select(2, 1)
weights = weights.reshape(*weights.shape, 1, 1, 1)
self.main_class.step = self.step
return self.main_class.dynthresh(x_out[:-uncond.shape[0]], denoised_uncond, cond_scale, weights)
######################### XYZ Plot Script Support logic #########################
def make_axis_options():
xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ == "xyz_grid.py"][0].module
def apply_mimic_scale(p, x, xs):
if x != 0:
setattr(p, "dynthres_enabled", True)
setattr(p, "dynthres_mimic_scale", x)
else:
setattr(p, "dynthres_enabled", False)
def confirm_scheduler(p, xs):
for x in xs:
if x not in VALID_MODES:
raise RuntimeError(f"Unknown Scheduler: {x}")
extra_axis_options = [
xyz_grid.AxisOption("[DynThres] Mimic Scale", float, apply_mimic_scale),
xyz_grid.AxisOption("[DynThres] Threshold Percentile", float, xyz_grid.apply_field("dynthres_threshold_percentile")),
xyz_grid.AxisOption("[DynThres] Mimic Scheduler", str, xyz_grid.apply_field("dynthres_mimic_mode"), confirm=confirm_scheduler, choices=lambda: VALID_MODES),
xyz_grid.AxisOption("[DynThres] Mimic minimum", float, xyz_grid.apply_field("dynthres_mimic_scale_min")),
xyz_grid.AxisOption("[DynThres] CFG Scheduler", str, xyz_grid.apply_field("dynthres_cfg_mode"), confirm=confirm_scheduler, choices=lambda: VALID_MODES),
xyz_grid.AxisOption("[DynThres] CFG minimum", float, xyz_grid.apply_field("dynthres_cfg_scale_min")),
xyz_grid.AxisOption("[DynThres] Power scheduler value", float, xyz_grid.apply_field("dynthres_power_val"))
]
if not any("[DynThres]" in x.label for x in xyz_grid.axis_options):
xyz_grid.axis_options.extend(extra_axis_options)
def callbackBeforeUi():
try:
make_axis_options()
except Exception as e:
traceback.print_exc()
print(f"Failed to add support for X/Y/Z Plot Script because: {e}")
script_callbacks.on_before_ui(callbackBeforeUi)