--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: f90426c4-9feb-46bd-9d44-6f44764f060d results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: fp16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 33eb588516be126a_train_data.json ds_type: json field: content path: /workspace/input_data/33eb588516be126a_train_data.json type: completion debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/f90426c4-9feb-46bd-9d44-6f44764f060d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB 1: 70GiB 2: 70GiB 3: 70GiB 4: 70GiB 5: 70GiB 6: 70GiB 7: 70GiB max_steps: 20 micro_batch_size: 1 mlflow_experiment_name: /tmp/33eb588516be126a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 4056 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f90426c4-9feb-46bd-9d44-6f44764f060d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f90426c4-9feb-46bd-9d44-6f44764f060d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# f90426c4-9feb-46bd-9d44-6f44764f060d This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.0496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 177.4688 | 0.0696 | 1 | 11.0825 | | 177.3516 | 0.2783 | 4 | 11.0793 | | 177.1875 | 0.5565 | 8 | 11.0689 | | 176.9453 | 0.8348 | 12 | 11.0496 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1