---
library_name: peft
base_model: katuni4ka/tiny-random-falcon-40b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f90426c4-9feb-46bd-9d44-6f44764f060d
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
accelerate_config:
dynamo_backend: inductor
mixed_precision: fp16
num_machines: 1
num_processes: auto
use_cpu: false
adapter: lora
base_model: katuni4ka/tiny-random-falcon-40b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 33eb588516be126a_train_data.json
ds_type: json
field: content
path: /workspace/input_data/33eb588516be126a_train_data.json
type: completion
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: VERSIL91/f90426c4-9feb-46bd-9d44-6f44764f060d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_memory:
0: 70GiB
1: 70GiB
2: 70GiB
3: 70GiB
4: 70GiB
5: 70GiB
6: 70GiB
7: 70GiB
max_steps: 20
micro_batch_size: 1
mlflow_experiment_name: /tmp/33eb588516be126a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
quantization_config:
llm_int8_enable_fp32_cpu_offload: true
load_in_8bit: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f90426c4-9feb-46bd-9d44-6f44764f060d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f90426c4-9feb-46bd-9d44-6f44764f060d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
# f90426c4-9feb-46bd-9d44-6f44764f060d
This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 11.0496
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 177.4688 | 0.0696 | 1 | 11.0825 |
| 177.3516 | 0.2783 | 4 | 11.0793 |
| 177.1875 | 0.5565 | 8 | 11.0689 |
| 176.9453 | 0.8348 | 12 | 11.0496 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1