--- datasets: - universeTBD/arxiv-abstracts --- # Astronomy hypothesis generation with Falcon-7B It was fine-tuned on several thousand astronomy abstracts collected on Arxiv. ## Model Details ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch online_model = AutoModelForCausalLM.from_pretrained("charlieoneill/falcon-7b-abstracts-2190", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b") pipeline = transformers.pipeline( "text-generation", model=online_model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "### Instruction: Generate a scientific hypothesis about astronomy in the style of an Arxiv paper.\n ### Hypothesis:", max_length=500, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) def format_output(output): output = output.replace("\n", " ") # Replace newline characters with spaces output = output.replace("\\n", " ") parts = output.split("###") # Split string at '###' # Get and clean instruction part instruction = parts[1].strip() # Get and clean hypothesis part hypothesis = parts[2].strip() # Format the output formatted_output = f"{instruction}\n\n{hypothesis}" return formatted_output format_output(sequences[0]['generated_text']) ``` ### Model Description - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]