--- license: apache-2.0 language: - en library_name: transformers datasets: - allenai/olmo-mix-1124 --- # BPE Baseline This 8B model was trained from scratch with a traditional subword BPE tokenizer, and serves as our baseline in experiments. The model was trained with the Olmo2 7B architecture and pretraining data. It has a context length of 4,096 tokens and is trained on 321B tokens. The tokenizer has a vocabulary size of 200k. ## Example Usage ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("UW/OLMo2-8B-BPE") model = AutoModelForCausalLM.from_pretrained("UW/OLMo2-8B-BPE") tokenizer.convert_ids_to_tokens(tokenizer.encode("By the way, I am a fan of the Milky Way.")) # ['By', 'Ġthe', 'Ġway', ',', 'ĠI', 'Ġam', 'Ġa', 'Ġfan', 'Ġof', 'Ġthe', 'ĠMilky', 'ĠWay', '.'] ``` # Citation ``` @misc{liu-etal-2025-superbpe, title={SuperBPE: Space Travel for Language Models}, author={Alisa Liu and Jonathan Hayase and Valentin Hofmann and Sewoong Oh and Noah A. Smith and Yejin Choi}, year={2025}, eprint={2503.13423}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.13423}, } ```