from dataclasses import dataclass import os import dataclasses import io import pickle from typing import List, Union, Dict, cast import torch from torch import Tensor from torch.futures import Future from pathlib import Path from .metadata import ( Metadata, MetadataIndex, ) from .storage import ( StorageReader, StorageWriter, WriteResult, ) from .planner import ( LoadItemType, LoadPlanner, LoadPlan, SavePlan, SavePlanner, ReadItem, WriteItem, WriteItemType, ) from torch.distributed._shard._utils import narrow_tensor_by_index @dataclass class _StorageInfo: """ This is the per entry storage info """ relative_path: str offset: int length: int @dataclass class _StoragePrefix: prefix: str DEFAULT_SUFIX = ".distcp" def _trim(tensor: torch.Tensor) -> torch.Tensor: tensor = tensor.detach().cpu() if tensor.storage().size() != tensor.numel(): tensor = tensor.clone() return tensor def _result_from_write_item(item: WriteItem, size_in_bytes, storage_data) -> WriteResult: return WriteResult( index=item.index, size_in_bytes=size_in_bytes, storage_data=storage_data) def _write_item(stream, data, write_item, storage_key): offset = stream.tell() if write_item.type == WriteItemType.BYTE_IO: assert isinstance(data, io.BytesIO) stream.write(data.getbuffer()) else: assert isinstance(data, torch.Tensor) assert data.device == torch.device("cpu") torch.save(data, stream) length = stream.tell() - offset return _result_from_write_item( write_item, length, _StorageInfo(storage_key, offset, length) ) def _write_files_from_queue( file_queue: List, planner: SavePlanner, use_fsync: bool, ): write_results = [] for file_path, file_name, write_items in file_queue: tensor_w = [wi for wi in write_items if wi.type != WriteItemType.BYTE_IO] bytes_w = [wi for wi in write_items if wi.type == WriteItemType.BYTE_IO] with open(file_path, "wb") as stream: for write_item in bytes_w: data = planner.resolve_data(write_item) write_results.append(_write_item(stream, data, write_item, file_name)) for write_item in tensor_w: tensor = _trim(cast(torch.Tensor, planner.resolve_data(write_item))) assert not tensor.is_cuda write_results.append(_write_item(stream, tensor, write_item, file_name)) if use_fsync: os.fsync(stream.fileno()) return write_results class FileSystemWriter(StorageWriter): """ Basic implementation of StorageWriter using file IO. This implementation makes the following assumptions and simplifications: * The checkpoint path is an empty or non-existing directory. * File creation is atomic The checkpoint consist of one file per write request plus a `.metadata` file with the serialized metadata. """ def __init__( self, path: Union[str, os.PathLike], single_file_per_rank: bool = False, sync_files: bool = True, ) -> None: """ Initialize the writer pointing to `path` Args: path: diretory where the checkpoint will be writen to. single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True. sync_files: force files to be synced to permanent storage. Default to True. N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure. """ super().__init__() self.path = Path(path) self.single_file_per_rank = single_file_per_rank self.sync_files = sync_files def init(self, is_coordinator: bool) -> None: pass def prepare_local_plan(self, plan: SavePlan) -> SavePlan: # There's no storage input in the local plan return plan def prepare_global_plan(self, global_plan: List[SavePlan]) -> List[SavePlan]: self.path.mkdir(parents=True, exist_ok=True) new_plans = [ dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_")) for i, plan in enumerate(global_plan) ] return new_plans def write_data( self, plan: SavePlan, planner: SavePlanner, ) -> Future[List[WriteResult]]: storage_plan: _StoragePrefix = plan.storage_data file_count = 0 def gen_file(): nonlocal file_count file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFIX}" file_count += 1 return file_name file_queue = [] if self.single_file_per_rank: file_name = gen_file() file_queue.append((self.path / file_name, file_name, plan.items)) else: for item in plan.items: file_name = gen_file() file_queue.append((self.path / file_name, file_name, [item])) results = _write_files_from_queue( file_queue=file_queue, planner=planner, use_fsync=self.sync_files, ) fut: Future[List[WriteResult]] = Future() fut.set_result(results) return fut def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None: storage_md = dict() for wr_list in results: storage_md.update({ wr.index: wr.storage_data for wr in wr_list }) metadata.storage_data = storage_md with (self.path / ".metadata.tmp").open("wb") as metadata_file: pickle.dump(metadata, metadata_file) os.fsync(metadata_file.fileno()) (self.path / ".metadata.tmp").rename(self.path / ".metadata") class SlicedBufferedReader(io.BufferedReader): # TODO override read to handle (-1) correctly def __init__(self, base_stream: io.RawIOBase, offset: int, len: int): super().__init__(base_stream) self.offset = offset self.len = len self.seek(0) def seek(self, __offset: int, __whence: int = os.SEEK_SET) -> int: if __whence == os.SEEK_SET: __offset = self.offset + __offset elif __whence == os.SEEK_END: __whence = os.SEEK_SET __offset = (self.offset + self.len) - __offset return super().seek(__offset, __whence) def tell(self) -> int: return super().tell() - self.offset class FileSystemReader(StorageReader): def __init__(self, path: Union[str, os.PathLike]) -> None: super().__init__() self.path = Path(path) self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict() def _slice_file(self, file, sinfo: _StorageInfo): return SlicedBufferedReader( io.FileIO(file.fileno(), closefd=False), sinfo.offset, sinfo.length ) def read_data( self, plan: LoadPlan, planner: LoadPlanner ) -> Future[None]: # group requests by file per_file: Dict[str, List[ReadItem]] = dict() for read_item in plan.items: item_md = self.storage_data[read_item.storage_index] path = item_md.relative_path per_file.setdefault(path, []).append(read_item) for relative_path, reqs in per_file.items(): with (self.path / relative_path).open("rb") as file: # TODO sort by offset and cache the reading for req in reqs: item_md = self.storage_data[req.storage_index] file_slice = self._slice_file(file, item_md) if req.type == LoadItemType.BYTE_IO: bytes = io.BytesIO(file_slice.read(item_md.length)) bytes.seek(0) planner.load_bytes(req, bytes) else: tensor = cast(Tensor, torch.load(file_slice, map_location="cpu")) tensor = narrow_tensor_by_index(tensor, req.storage_offsets, req.lengths) target_tensor = planner.resolve_tensor(req).detach() assert ( target_tensor.size() == tensor.size() ), f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}" target_tensor.copy_(tensor) planner.commit_tensor(req, target_tensor) fut: Future = Future() fut.set_result(None) return fut # Implementating the abstract function in StorageReader def read_metadata(self) -> Metadata: with (self.path / ".metadata").open("rb") as metadata_file: return pickle.load(metadata_file) def init(self, metadata: Metadata, is_coordinator: bool) -> None: self.storage_data = metadata.storage_data assert self.storage_data is not None def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan: return plan def prepare_global_plan(self, global_plan: List[LoadPlan]) -> List[LoadPlan]: return global_plan