--- language: - grc tags: - flair - token-classification - ner widget: - ταῦτα εἴπας ὁ Ἀλέξανδρος παρίζει Πέρσῃ ἀνδρὶ ἄνδρα Μακεδόνα ὡς γυναῖκα τῷ λόγῳ · οἳ δέ , ἐπείτε σφέων οἱ Πέρσαι ψαύειν ἐπειρῶντο , διεργάζοντο αὐτούς . --- # Named Entity Recognition for Ancient Greek Pretrained NER tagging model for ancient Greek # Scores & Tagset
### Training | | Precision | Recall | F1-score | Support | |------|:---------:|:--------:|:--------:|:-------:| | PER | 93.39% | 96.33% | 94.84% | 2127 | | MISC | 84.69% | 92.50% | 88.42% | 933 | | LOC | 89.55% | 77.32% | 82.99% | 388 | ### Evaluation | | Precision | Recall | F1-score | Support | |------|:---------:|:--------:|:--------:|:-------:| | PER | 90.48% | 91.94% | 91.20% | 124 | | MISC | 89.29% | 94.34% | 91.74% | 159 | | LOC | 82.69% | 65.15% | 72.88% | 66 |
# Usage ```python from flair.data import Sentence from flair.models import SequenceTagger tagger = SequenceTagger.load("UGARIT/flair_grc_bert_ner") sentence = Sentence('ταῦτα εἴπας ὁ Ἀλέξανδρος παρίζει Πέρσῃ ἀνδρὶ ἄνδρα Μακεδόνα ὡς γυναῖκα τῷ λόγῳ · οἳ δέ , ἐπείτε σφέων οἱ Πέρσαι ψαύειν ἐπειρῶντο , διεργάζοντο αὐτούς .') tagger.predict(sentence) for entity in sentence.get_spans('ner'): print(entity) ``` # Citation *if you use this model, please consider citing [this work](https://www.researchgate.net/publication/365131651_Transformer-Based_Named_Entity_Recognition_for_Ancient_Greek):* ```latex @unpublished{yousefetal22 author = "Yousef, Tariq and Palladino, Chiara and Jänicke, Stefan", title = "Transformer-Based Named Entity Recognition for Ancient Greek", year = {2022}, month = {11}, doi = "10.13140/RG.2.2.34846.61761" url = {https://www.researchgate.net/publication/365131651_Transformer-Based_Named_Entity_Recognition_for_Ancient_Greek} }